基于协方差结构分析的细胞神经网络学习理论

M. Tanaka, H. Aomori, Y. Nishio, K. Oshima, M. Hasler
{"title":"基于协方差结构分析的细胞神经网络学习理论","authors":"M. Tanaka, H. Aomori, Y. Nishio, K. Oshima, M. Hasler","doi":"10.1109/CNNA.2010.5430326","DOIUrl":null,"url":null,"abstract":"This paper describes a learning theory of the CNN based on the covariance structure analysis using new numerical integral methods. In general, a Cellular Neural Network (CNN) is defined as a local connected circuit which has continuous state variables x ¿Rn. The importance is in that the piece-wise linear function of the CNN has a linear region |x| ¿ 1 for x ¿ x because the learning method can be constructed only in linear state and measurement equations, and because the linear region can be quantized from the continuous variable x to the multilevel quantized variable f(x) by each 1-bit ¿¿ modulator which is corresponding to a spiking neuron model. That is, our purpose is to determine the weight parameters ¿ in the connection matrices A, B, C, D, T and e by the machine learning method for equilibrium points of the CNN states equation x = 0. The covariance structure for the equilibrium point to the linear region will be constructed based on extended Chua's CNN theorem to have symmetric edges for aij = aji and asymmetric one-way edge aij ¿ 0 for aji = 0 for A-matrix A = [aij].","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Leaning theory of Cellular Neural Networks based on covariance structural analysis\",\"authors\":\"M. Tanaka, H. Aomori, Y. Nishio, K. Oshima, M. Hasler\",\"doi\":\"10.1109/CNNA.2010.5430326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a learning theory of the CNN based on the covariance structure analysis using new numerical integral methods. In general, a Cellular Neural Network (CNN) is defined as a local connected circuit which has continuous state variables x ¿Rn. The importance is in that the piece-wise linear function of the CNN has a linear region |x| ¿ 1 for x ¿ x because the learning method can be constructed only in linear state and measurement equations, and because the linear region can be quantized from the continuous variable x to the multilevel quantized variable f(x) by each 1-bit ¿¿ modulator which is corresponding to a spiking neuron model. That is, our purpose is to determine the weight parameters ¿ in the connection matrices A, B, C, D, T and e by the machine learning method for equilibrium points of the CNN states equation x = 0. The covariance structure for the equilibrium point to the linear region will be constructed based on extended Chua's CNN theorem to have symmetric edges for aij = aji and asymmetric one-way edge aij ¿ 0 for aji = 0 for A-matrix A = [aij].\",\"PeriodicalId\":336891,\"journal\":{\"name\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2010.5430326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文用新的数值积分方法描述了一种基于协方差结构分析的CNN学习理论。一般来说,细胞神经网络(CNN)被定义为具有连续状态变量x¿Rn的局部连接电路。重要的是,CNN的分段线性函数对于x¿x有一个线性区域|x´¿1,因为学习方法只能在线性状态和测量方程中构建,并且线性区域可以通过每个1位调制器从连续变量x量化到多电平量化变量f(x),这对应于一个尖峰神经元模型。也就是说,我们的目的是通过CNN状态方程x = 0的均衡点的机器学习方法确定连接矩阵A, B, C, D, T和e中的权重参数¿。基于扩展的Chua’s CNN定理构造平衡点到线性区域的协方差结构,使其在aij = aji时具有对称边,在A-矩阵A = [aij]时具有aji = 0时具有不对称单向边aij¿0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaning theory of Cellular Neural Networks based on covariance structural analysis
This paper describes a learning theory of the CNN based on the covariance structure analysis using new numerical integral methods. In general, a Cellular Neural Network (CNN) is defined as a local connected circuit which has continuous state variables x ¿Rn. The importance is in that the piece-wise linear function of the CNN has a linear region |x| ¿ 1 for x ¿ x because the learning method can be constructed only in linear state and measurement equations, and because the linear region can be quantized from the continuous variable x to the multilevel quantized variable f(x) by each 1-bit ¿¿ modulator which is corresponding to a spiking neuron model. That is, our purpose is to determine the weight parameters ¿ in the connection matrices A, B, C, D, T and e by the machine learning method for equilibrium points of the CNN states equation x = 0. The covariance structure for the equilibrium point to the linear region will be constructed based on extended Chua's CNN theorem to have symmetric edges for aij = aji and asymmetric one-way edge aij ¿ 0 for aji = 0 for A-matrix A = [aij].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信