支持向量机学习的IP地址结构延迟预测

Robert Beverly, K. Sollins, A. Berger
{"title":"支持向量机学习的IP地址结构延迟预测","authors":"Robert Beverly, K. Sollins, A. Berger","doi":"10.1145/1162678.1162682","DOIUrl":null,"url":null,"abstract":"We examine the ability to exploit the hierarchical structure of Internet addresses in order to endow network agents with predictive capabilities. Specifically, we consider Support Vector Machines (SVMs) for prediction of round-trip latency to random network destinations the agent has not previously interacted with. We use kernel functions to transform the structured, yet fragmented and discontinuous, IP address space into a feature space amenable to SVMs. Our SVM approach is accurate, fast, suitable to on-line learning and generalizes well. SVM regression on a large, randomly collected data set of 30,000 Internet latencies yields a mean prediction error of 25ms using only 20% of the samples for training. Our results are promising for equipping end-nodes with intelligence for service selection, user-directed routing, resource scheduling and network inference. Finally, feature selection analysis finds that the eight most significant IP address bits provide surprisingly strong discriminative power.","PeriodicalId":216113,"journal":{"name":"Annual ACM Workshop on Mining Network Data","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"SVM learning of IP address structure for latency prediction\",\"authors\":\"Robert Beverly, K. Sollins, A. Berger\",\"doi\":\"10.1145/1162678.1162682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the ability to exploit the hierarchical structure of Internet addresses in order to endow network agents with predictive capabilities. Specifically, we consider Support Vector Machines (SVMs) for prediction of round-trip latency to random network destinations the agent has not previously interacted with. We use kernel functions to transform the structured, yet fragmented and discontinuous, IP address space into a feature space amenable to SVMs. Our SVM approach is accurate, fast, suitable to on-line learning and generalizes well. SVM regression on a large, randomly collected data set of 30,000 Internet latencies yields a mean prediction error of 25ms using only 20% of the samples for training. Our results are promising for equipping end-nodes with intelligence for service selection, user-directed routing, resource scheduling and network inference. Finally, feature selection analysis finds that the eight most significant IP address bits provide surprisingly strong discriminative power.\",\"PeriodicalId\":216113,\"journal\":{\"name\":\"Annual ACM Workshop on Mining Network Data\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual ACM Workshop on Mining Network Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1162678.1162682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual ACM Workshop on Mining Network Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1162678.1162682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们研究了利用互联网地址的层次结构来赋予网络代理预测能力的能力。具体来说,我们考虑支持向量机(svm)来预测智能体以前没有与之交互的随机网络目的地的往返延迟。我们使用核函数将结构化的、碎片化的、不连续的IP地址空间转换为支持向量机的特征空间。该方法具有准确、快速、适合在线学习和泛化性好的特点。SVM回归在一个随机收集的30,000个互联网延迟的大型数据集上,只使用20%的样本进行训练,平均预测误差为25ms。我们的研究结果有望为终端节点提供服务选择、用户导向路由、资源调度和网络推理的智能。最后,特征选择分析发现,八个最重要的IP地址位具有惊人的强辨别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVM learning of IP address structure for latency prediction
We examine the ability to exploit the hierarchical structure of Internet addresses in order to endow network agents with predictive capabilities. Specifically, we consider Support Vector Machines (SVMs) for prediction of round-trip latency to random network destinations the agent has not previously interacted with. We use kernel functions to transform the structured, yet fragmented and discontinuous, IP address space into a feature space amenable to SVMs. Our SVM approach is accurate, fast, suitable to on-line learning and generalizes well. SVM regression on a large, randomly collected data set of 30,000 Internet latencies yields a mean prediction error of 25ms using only 20% of the samples for training. Our results are promising for equipping end-nodes with intelligence for service selection, user-directed routing, resource scheduling and network inference. Finally, feature selection analysis finds that the eight most significant IP address bits provide surprisingly strong discriminative power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信