约束网络引导下的进化搜索求解CSP

M. Riff-Rojas
{"title":"约束网络引导下的进化搜索求解CSP","authors":"M. Riff-Rojas","doi":"10.1109/ICEC.1997.592332","DOIUrl":null,"url":null,"abstract":"We are interested in defining a general evolutionary algorithm to solve constraint satisfaction problems, which takes into account both advantages of the systematic and traditional methods and of characteristics of the CSP. In this context knowledge about properties of the constraint network has allowed us to define a fitness function, for evaluation (Riff, 1996). We introduce two new operators which look at the constraint network during evolution. The first one is a bisexual operator like crossover denominated arc-crossover, for exploitation. The second one is an operator like mutation called arc-mutation, for exploration. These operators are used to improve the stochastic search.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Evolutionary search guided by the constraint network to solve CSP\",\"authors\":\"M. Riff-Rojas\",\"doi\":\"10.1109/ICEC.1997.592332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are interested in defining a general evolutionary algorithm to solve constraint satisfaction problems, which takes into account both advantages of the systematic and traditional methods and of characteristics of the CSP. In this context knowledge about properties of the constraint network has allowed us to define a fitness function, for evaluation (Riff, 1996). We introduce two new operators which look at the constraint network during evolution. The first one is a bisexual operator like crossover denominated arc-crossover, for exploitation. The second one is an operator like mutation called arc-mutation, for exploration. These operators are used to improve the stochastic search.\",\"PeriodicalId\":167852,\"journal\":{\"name\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1997.592332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

我们感兴趣的是定义一种通用的进化算法来解决约束满足问题,该算法既考虑了系统方法和传统方法的优点,又考虑了CSP的特点。在这种情况下,关于约束网络属性的知识使我们能够定义适应度函数,用于评估(Riff, 1996)。我们引入了两个新的算子,它们在演化过程中观察约束网络。第一个是双性算子,比如交叉,命名为弧交叉,表示利用。第二种是一种类似算子的突变,叫做弧形突变,用于探索。这些算子用于改进随机搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary search guided by the constraint network to solve CSP
We are interested in defining a general evolutionary algorithm to solve constraint satisfaction problems, which takes into account both advantages of the systematic and traditional methods and of characteristics of the CSP. In this context knowledge about properties of the constraint network has allowed us to define a fitness function, for evaluation (Riff, 1996). We introduce two new operators which look at the constraint network during evolution. The first one is a bisexual operator like crossover denominated arc-crossover, for exploitation. The second one is an operator like mutation called arc-mutation, for exploration. These operators are used to improve the stochastic search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信