以激光雷达为真值的GOSAT/CAI、MODIS、CALIPSO/CALIOP和Landsat-8/OLI云参数估计比较研究

K. Arai, Masanori Sakashita, H. Okumura, S. Kawakami, K. Shiomi, H. Ohyama
{"title":"以激光雷达为真值的GOSAT/CAI、MODIS、CALIPSO/CALIOP和Landsat-8/OLI云参数估计比较研究","authors":"K. Arai, Masanori Sakashita, H. Okumura, S. Kawakami, K. Shiomi, H. Ohyama","doi":"10.14569/IJARAI.2016.050504","DOIUrl":null,"url":null,"abstract":"A comparative study on cloud parameter estimation among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI is carried out using Laser Radar: Lidar as a truth data. Optical depth, size distribution, as well as cirrus type of clouds are cloud parameters. In particular, cirrus cloud detection is tough issue. 1.38 µm channel is required for its detection. Although MODIS and Landsat-8/OLI have such channel, the other mission instruments, CAI and CALIPSO/CALIOP do not have such channel. As a truth data of cloud parameter, ground based Lidar is used in this comparative study. From the Lidar, backscattered echo signal and depolarization coefficient are obtained as a function of altitude. Therefore, cloud type, vertical profile can be derived from the Lidar data. CALIPSO/CALIOP is satellite based Lidar which allows observation of clouds from space. Although the directions of laser light emissions between CALIPSO/CALIOP and the ground based Lidar are different, their principles are same. Therefore, it is expected that CALIPSO/CALIOP data derived cloud parameters are similar to the ground based Lidar data derived cloud parameters. The experimental results show the aforementioned facts and are useful for improvement of cloud parameter estimation accuracy with several sensor data combinations.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data\",\"authors\":\"K. Arai, Masanori Sakashita, H. Okumura, S. Kawakami, K. Shiomi, H. Ohyama\",\"doi\":\"10.14569/IJARAI.2016.050504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative study on cloud parameter estimation among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI is carried out using Laser Radar: Lidar as a truth data. Optical depth, size distribution, as well as cirrus type of clouds are cloud parameters. In particular, cirrus cloud detection is tough issue. 1.38 µm channel is required for its detection. Although MODIS and Landsat-8/OLI have such channel, the other mission instruments, CAI and CALIPSO/CALIOP do not have such channel. As a truth data of cloud parameter, ground based Lidar is used in this comparative study. From the Lidar, backscattered echo signal and depolarization coefficient are obtained as a function of altitude. Therefore, cloud type, vertical profile can be derived from the Lidar data. CALIPSO/CALIOP is satellite based Lidar which allows observation of clouds from space. Although the directions of laser light emissions between CALIPSO/CALIOP and the ground based Lidar are different, their principles are same. Therefore, it is expected that CALIPSO/CALIOP data derived cloud parameters are similar to the ground based Lidar data derived cloud parameters. The experimental results show the aforementioned facts and are useful for improvement of cloud parameter estimation accuracy with several sensor data combinations.\",\"PeriodicalId\":323606,\"journal\":{\"name\":\"International Journal of Advanced Research in Artificial Intelligence\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/IJARAI.2016.050504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2016.050504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以激光雷达:激光雷达为真值数据,对GOSAT/CAI、MODIS、CALIPSO/CALIOP和Landsat-8/OLI的云参数估计进行了对比研究。云的光学深度、大小分布以及卷云类型是云的参数。特别是,卷云检测是一个棘手的问题。其检测通道要求为1.38µm。虽然MODIS和Landsat-8/OLI有这样的信道,但其他任务仪器,CAI和CALIPSO/CALIOP没有这样的信道。地面激光雷达作为云参数的真实数据,被用于对比研究。从激光雷达上得到了随高度变化的后向散射回波信号和去极化系数。因此,可以从激光雷达数据中导出云的类型、垂直剖面。CALIPSO/CALIOP是基于卫星的激光雷达,可以从太空观测云。虽然CALIPSO/CALIOP与地面激光雷达的激光发射方向不同,但其原理是相同的。因此,预计CALIPSO/CALIOP数据导出的云参数与地面激光雷达数据导出的云参数相似。实验结果证明了上述事实,有助于提高多种传感器数据组合的云参数估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data
A comparative study on cloud parameter estimation among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI is carried out using Laser Radar: Lidar as a truth data. Optical depth, size distribution, as well as cirrus type of clouds are cloud parameters. In particular, cirrus cloud detection is tough issue. 1.38 µm channel is required for its detection. Although MODIS and Landsat-8/OLI have such channel, the other mission instruments, CAI and CALIPSO/CALIOP do not have such channel. As a truth data of cloud parameter, ground based Lidar is used in this comparative study. From the Lidar, backscattered echo signal and depolarization coefficient are obtained as a function of altitude. Therefore, cloud type, vertical profile can be derived from the Lidar data. CALIPSO/CALIOP is satellite based Lidar which allows observation of clouds from space. Although the directions of laser light emissions between CALIPSO/CALIOP and the ground based Lidar are different, their principles are same. Therefore, it is expected that CALIPSO/CALIOP data derived cloud parameters are similar to the ground based Lidar data derived cloud parameters. The experimental results show the aforementioned facts and are useful for improvement of cloud parameter estimation accuracy with several sensor data combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信