Y. Ephraim, Joshua Coblenz, B. L. Mark, H. Lev-Ari
{"title":"基于矩生成函数匹配的流量速率网络断层扫描","authors":"Y. Ephraim, Joshua Coblenz, B. L. Mark, H. Lev-Ari","doi":"10.1109/CISS53076.2022.9751201","DOIUrl":null,"url":null,"abstract":"Network tomography aims at estimating source-destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for independent Poisson traffic over networks operating under deterministic as well as random routing regimes. Vardi used a second-order moment matching approach to estimate the rates where a solution for the resulting linear matrix equation was obtained using an iterative minimum I-divergence procedure. Vardi's second-order moment matching approach was recently extended to higher order cumulant matching approach with the goal of improving the rank of the system of linear equations. In this paper we go one step further and develop a moment generating function matching approach for rate estimation, and seek a least squares as well as an iterative minimum I-divergence solution of the resulting linear equations. We also specialize this approach to a characteristic function matching approach which exhibits some advantages. These follow from the fact that the characteristic function matching approach results in fewer conflicting equations involving the empirical estimates. We demonstrate that the new approach outperforms the cumulant matching approach while being conceptually simpler.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Rate Network Tomography via Moment Generating Function Matching\",\"authors\":\"Y. Ephraim, Joshua Coblenz, B. L. Mark, H. Lev-Ari\",\"doi\":\"10.1109/CISS53076.2022.9751201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network tomography aims at estimating source-destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for independent Poisson traffic over networks operating under deterministic as well as random routing regimes. Vardi used a second-order moment matching approach to estimate the rates where a solution for the resulting linear matrix equation was obtained using an iterative minimum I-divergence procedure. Vardi's second-order moment matching approach was recently extended to higher order cumulant matching approach with the goal of improving the rank of the system of linear equations. In this paper we go one step further and develop a moment generating function matching approach for rate estimation, and seek a least squares as well as an iterative minimum I-divergence solution of the resulting linear equations. We also specialize this approach to a characteristic function matching approach which exhibits some advantages. These follow from the fact that the characteristic function matching approach results in fewer conflicting equations involving the empirical estimates. We demonstrate that the new approach outperforms the cumulant matching approach while being conceptually simpler.\",\"PeriodicalId\":305918,\"journal\":{\"name\":\"2022 56th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 56th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS53076.2022.9751201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic Rate Network Tomography via Moment Generating Function Matching
Network tomography aims at estimating source-destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for independent Poisson traffic over networks operating under deterministic as well as random routing regimes. Vardi used a second-order moment matching approach to estimate the rates where a solution for the resulting linear matrix equation was obtained using an iterative minimum I-divergence procedure. Vardi's second-order moment matching approach was recently extended to higher order cumulant matching approach with the goal of improving the rank of the system of linear equations. In this paper we go one step further and develop a moment generating function matching approach for rate estimation, and seek a least squares as well as an iterative minimum I-divergence solution of the resulting linear equations. We also specialize this approach to a characteristic function matching approach which exhibits some advantages. These follow from the fact that the characteristic function matching approach results in fewer conflicting equations involving the empirical estimates. We demonstrate that the new approach outperforms the cumulant matching approach while being conceptually simpler.