{"title":"利用车辆和车载导航数据估算插电式混合动力汽车的能耗","authors":"A. Ourabah, B. Quost, A. Gayed, T. Denoeux","doi":"10.1109/IVS.2015.7225775","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for predicting the energy consumption of a plug-in hybrid electric vehicle (PHEV). We propose to estimate energy consumption strategy from data via regression applied to trip recordings. Descriptors of the trip elements are obtained from both recordings and statistics provided by a GPS navigation system. Trips are then split into elementary units corresponding to an homogeneous driving context. For each trip element, the optimal energy consumption strategy is computed via (expensive) dynamic programming simulations. Here, data analysis is used so as to identify descriptors of this trip element that are relevant to predict the energy consumption. Then, a polynomial model is fit to the data so as to estimate, for each new trip element, the optimal energy consumption strategy from the expected driving condition, rather than using dynamic programming. Our approach distinguishes itself by the fact that road context, driver style, road slope and auxiliary electrical power are taken into account to estimate the energy consumption of a PHEV. The accuracy of the prediction process is evaluated over test data, and demonstrates the interest of our approach in predicting energy consumption.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimating energy consumption of a PHEV using vehicle and on-board navigation data\",\"authors\":\"A. Ourabah, B. Quost, A. Gayed, T. Denoeux\",\"doi\":\"10.1109/IVS.2015.7225775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for predicting the energy consumption of a plug-in hybrid electric vehicle (PHEV). We propose to estimate energy consumption strategy from data via regression applied to trip recordings. Descriptors of the trip elements are obtained from both recordings and statistics provided by a GPS navigation system. Trips are then split into elementary units corresponding to an homogeneous driving context. For each trip element, the optimal energy consumption strategy is computed via (expensive) dynamic programming simulations. Here, data analysis is used so as to identify descriptors of this trip element that are relevant to predict the energy consumption. Then, a polynomial model is fit to the data so as to estimate, for each new trip element, the optimal energy consumption strategy from the expected driving condition, rather than using dynamic programming. Our approach distinguishes itself by the fact that road context, driver style, road slope and auxiliary electrical power are taken into account to estimate the energy consumption of a PHEV. The accuracy of the prediction process is evaluated over test data, and demonstrates the interest of our approach in predicting energy consumption.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating energy consumption of a PHEV using vehicle and on-board navigation data
This paper presents a novel approach for predicting the energy consumption of a plug-in hybrid electric vehicle (PHEV). We propose to estimate energy consumption strategy from data via regression applied to trip recordings. Descriptors of the trip elements are obtained from both recordings and statistics provided by a GPS navigation system. Trips are then split into elementary units corresponding to an homogeneous driving context. For each trip element, the optimal energy consumption strategy is computed via (expensive) dynamic programming simulations. Here, data analysis is used so as to identify descriptors of this trip element that are relevant to predict the energy consumption. Then, a polynomial model is fit to the data so as to estimate, for each new trip element, the optimal energy consumption strategy from the expected driving condition, rather than using dynamic programming. Our approach distinguishes itself by the fact that road context, driver style, road slope and auxiliary electrical power are taken into account to estimate the energy consumption of a PHEV. The accuracy of the prediction process is evaluated over test data, and demonstrates the interest of our approach in predicting energy consumption.