基于协同多层感知器(MLP)分类器的Twitter情感分析

R. Devi, P. Keerthika, P. Suresh, M. Sangeetha, C. Sagana, S. Savitha, K. Devendran, B. Nithiesh
{"title":"基于协同多层感知器(MLP)分类器的Twitter情感分析","authors":"R. Devi, P. Keerthika, P. Suresh, M. Sangeetha, C. Sagana, S. Savitha, K. Devendran, B. Nithiesh","doi":"10.1109/ICCCI56745.2023.10128430","DOIUrl":null,"url":null,"abstract":"In the last decade, Twitter is facing a major challenge in identifying the sentiments of the tweets. These tweets are useful in understanding the opinion of different end users about a variety of topics. Sentiment Analysis is more important to analyse the text data in the dataset. But the tweets consist of non-useful characters which make sentiment analysis difficult. With multi-layer perceptron classifier, classification for new tweets as either positive or negative is done. This can be done by using a range of features like tokenisation, lemmatisation, stemming on the words used in the tweets, the sentiment of the words, and the user’s profile. Feature extraction is made to clean the words/phrases containing non-useful characters like URL, Numeric alphabets, punctuations etc. It improves the accuracy for the large amount of data with high efficiency.","PeriodicalId":205683,"journal":{"name":"2023 International Conference on Computer Communication and Informatics (ICCCI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twitter Sentiment Analysis using Collaborative Multi Layer Perceptron(MLP) Classifier\",\"authors\":\"R. Devi, P. Keerthika, P. Suresh, M. Sangeetha, C. Sagana, S. Savitha, K. Devendran, B. Nithiesh\",\"doi\":\"10.1109/ICCCI56745.2023.10128430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, Twitter is facing a major challenge in identifying the sentiments of the tweets. These tweets are useful in understanding the opinion of different end users about a variety of topics. Sentiment Analysis is more important to analyse the text data in the dataset. But the tweets consist of non-useful characters which make sentiment analysis difficult. With multi-layer perceptron classifier, classification for new tweets as either positive or negative is done. This can be done by using a range of features like tokenisation, lemmatisation, stemming on the words used in the tweets, the sentiment of the words, and the user’s profile. Feature extraction is made to clean the words/phrases containing non-useful characters like URL, Numeric alphabets, punctuations etc. It improves the accuracy for the large amount of data with high efficiency.\",\"PeriodicalId\":205683,\"journal\":{\"name\":\"2023 International Conference on Computer Communication and Informatics (ICCCI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Computer Communication and Informatics (ICCCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCI56745.2023.10128430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer Communication and Informatics (ICCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCI56745.2023.10128430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,Twitter在识别推文的情绪方面面临着重大挑战。这些tweet有助于了解不同终端用户对各种主题的看法。情感分析更重要的是对数据集中的文本数据进行分析。但推文由无用的字符组成,这使得情感分析变得困难。利用多层感知器分类器对新推文进行正面或负面分类。这可以通过使用一系列功能来完成,比如标记化、词源化、提取推文中使用的单词、单词的情感和用户的个人资料。特征提取用于清除包含无用字符(如URL、数字字母、标点符号等)的单词/短语。它以高效率提高了大量数据的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twitter Sentiment Analysis using Collaborative Multi Layer Perceptron(MLP) Classifier
In the last decade, Twitter is facing a major challenge in identifying the sentiments of the tweets. These tweets are useful in understanding the opinion of different end users about a variety of topics. Sentiment Analysis is more important to analyse the text data in the dataset. But the tweets consist of non-useful characters which make sentiment analysis difficult. With multi-layer perceptron classifier, classification for new tweets as either positive or negative is done. This can be done by using a range of features like tokenisation, lemmatisation, stemming on the words used in the tweets, the sentiment of the words, and the user’s profile. Feature extraction is made to clean the words/phrases containing non-useful characters like URL, Numeric alphabets, punctuations etc. It improves the accuracy for the large amount of data with high efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信