基于上下文聚类的传感器网络自动状态估计

C. Diggans
{"title":"基于上下文聚类的传感器网络自动状态估计","authors":"C. Diggans","doi":"10.1109/AERO47225.2020.9172792","DOIUrl":null,"url":null,"abstract":"Through the lens of an application in space object tracking, we develop the concept of a data-aware algorithmic similarity kernel that enables clustering of partial state observations according to their source phenomena. Particularly, we consider data sets consisting of such observations made by distributed sensor networks where pairwise comparisons yield no useful association. Utilizing the data set as context, likelihoods of association for pairs are assigned by an algorithmic similarity measure that incorporates expert knowledge and domain specific heuristics through statistical analysis of higher order tuples. Spectral clustering is applied to the resulting affinity matrix to partition the data by source, where further expert analysis can better characterize the states being observed. The example application has low dimensionality and relatively simple statistical associations that make it an ideal model for illustrating the overall approach.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"454 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contextual Clustering for Automated State Estimation by Sensor Networks\",\"authors\":\"C. Diggans\",\"doi\":\"10.1109/AERO47225.2020.9172792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through the lens of an application in space object tracking, we develop the concept of a data-aware algorithmic similarity kernel that enables clustering of partial state observations according to their source phenomena. Particularly, we consider data sets consisting of such observations made by distributed sensor networks where pairwise comparisons yield no useful association. Utilizing the data set as context, likelihoods of association for pairs are assigned by an algorithmic similarity measure that incorporates expert knowledge and domain specific heuristics through statistical analysis of higher order tuples. Spectral clustering is applied to the resulting affinity matrix to partition the data by source, where further expert analysis can better characterize the states being observed. The example application has low dimensionality and relatively simple statistical associations that make it an ideal model for illustrating the overall approach.\",\"PeriodicalId\":114560,\"journal\":{\"name\":\"2020 IEEE Aerospace Conference\",\"volume\":\"454 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO47225.2020.9172792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过在空间目标跟踪中的应用,我们开发了数据感知算法相似核的概念,该概念能够根据其源现象对部分状态观测进行聚类。特别是,我们考虑由分布式传感器网络所做的观察组成的数据集,其中两两比较不会产生有用的关联。利用数据集作为上下文,通过对高阶元组进行统计分析,结合专家知识和领域特定启发式的算法相似性度量来分配对的关联可能性。对得到的亲和矩阵应用谱聚类,按源划分数据,进一步的专家分析可以更好地表征观察到的状态。示例应用程序具有低维性和相对简单的统计关联,这使其成为说明整个方法的理想模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual Clustering for Automated State Estimation by Sensor Networks
Through the lens of an application in space object tracking, we develop the concept of a data-aware algorithmic similarity kernel that enables clustering of partial state observations according to their source phenomena. Particularly, we consider data sets consisting of such observations made by distributed sensor networks where pairwise comparisons yield no useful association. Utilizing the data set as context, likelihoods of association for pairs are assigned by an algorithmic similarity measure that incorporates expert knowledge and domain specific heuristics through statistical analysis of higher order tuples. Spectral clustering is applied to the resulting affinity matrix to partition the data by source, where further expert analysis can better characterize the states being observed. The example application has low dimensionality and relatively simple statistical associations that make it an ideal model for illustrating the overall approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信