基于深度学习的短信垃圾邮件二分类检测:用采样技术处理不平衡数据

M. Sethi, Naman Tyagi, Parmeet Singh Kalsi, Parupalli Atchuta Rao
{"title":"基于深度学习的短信垃圾邮件二分类检测:用采样技术处理不平衡数据","authors":"M. Sethi, Naman Tyagi, Parmeet Singh Kalsi, Parupalli Atchuta Rao","doi":"10.1109/ACCAI58221.2023.10199860","DOIUrl":null,"url":null,"abstract":"This research paper presents a deep learning-based approach for detecting spam in SMS (text) data. The study uses various models namely Dense, LSTM, Bi-LSTM, and GRU to conduct binary classification and predict spam text messages. To address the imbalanced data problem, the study employs undersampling, downsampling, and SMOTE sampling techniques on a public dataset of SMS messages from UCL datasets. The paper presents a study on detecting spam messages in SMS using a dense model. The researchers visualize the commonly used words in spam and non-spam messages and analyze their impact on the model's performance. The findings from this study demonstrate that the proposed dense model exhibits high accuracy in detecting spam messages on the test dataset. This suggests that the model can be useful in identifying spam messages in SMS.","PeriodicalId":382104,"journal":{"name":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning-based Binary Classification for Spam Detection in SMS Data: Addressing Imbalanced Data with Sampling Techniques\",\"authors\":\"M. Sethi, Naman Tyagi, Parmeet Singh Kalsi, Parupalli Atchuta Rao\",\"doi\":\"10.1109/ACCAI58221.2023.10199860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper presents a deep learning-based approach for detecting spam in SMS (text) data. The study uses various models namely Dense, LSTM, Bi-LSTM, and GRU to conduct binary classification and predict spam text messages. To address the imbalanced data problem, the study employs undersampling, downsampling, and SMOTE sampling techniques on a public dataset of SMS messages from UCL datasets. The paper presents a study on detecting spam messages in SMS using a dense model. The researchers visualize the commonly used words in spam and non-spam messages and analyze their impact on the model's performance. The findings from this study demonstrate that the proposed dense model exhibits high accuracy in detecting spam messages on the test dataset. This suggests that the model can be useful in identifying spam messages in SMS.\",\"PeriodicalId\":382104,\"journal\":{\"name\":\"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCAI58221.2023.10199860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCAI58221.2023.10199860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于深度学习的短信垃圾信息检测方法。本研究使用Dense、LSTM、Bi-LSTM、GRU等多种模型对垃圾短信进行二值分类和预测。为了解决数据不平衡问题,本研究对来自UCL数据集的短信公共数据集采用了欠采样、下采样和SMOTE采样技术。提出了一种基于密集模型的短信垃圾信息检测方法。研究人员将垃圾邮件和非垃圾邮件中常用的单词可视化,并分析它们对模型性能的影响。本研究的结果表明,所提出的密集模型在检测测试数据集上的垃圾邮件方面具有很高的准确性。这表明该模型可用于识别SMS中的垃圾邮件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-based Binary Classification for Spam Detection in SMS Data: Addressing Imbalanced Data with Sampling Techniques
This research paper presents a deep learning-based approach for detecting spam in SMS (text) data. The study uses various models namely Dense, LSTM, Bi-LSTM, and GRU to conduct binary classification and predict spam text messages. To address the imbalanced data problem, the study employs undersampling, downsampling, and SMOTE sampling techniques on a public dataset of SMS messages from UCL datasets. The paper presents a study on detecting spam messages in SMS using a dense model. The researchers visualize the commonly used words in spam and non-spam messages and analyze their impact on the model's performance. The findings from this study demonstrate that the proposed dense model exhibits high accuracy in detecting spam messages on the test dataset. This suggests that the model can be useful in identifying spam messages in SMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信