一种稳健的心房颤动检测方法

Jing Hu, Wei Zhao, Yanwu Xu, Dongya Jia, Cong Yan, Hongmei Wang, Tianyuan You
{"title":"一种稳健的心房颤动检测方法","authors":"Jing Hu, Wei Zhao, Yanwu Xu, Dongya Jia, Cong Yan, Hongmei Wang, Tianyuan You","doi":"10.22489/CinC.2018.268","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation (AF) is a common atrial arrhythmia occurring in clinical practice and can be diagnosed using electrocardiogram (ECG) signal. A novel method is proposed to detect normal, AF, non-AF related other abnormal heart rhythms and noisy recordings based on the combination of deep features and handcraft features. We used Computing in Cardiology Challenge 2017 database as training set and MIT-BIH atrial fibrillation database (AFDB) as test set. The proposed algorithm was achieved an accuracy of 96.3%, F1 of 95.5%, sensitivity of 88.7% and specificity of 99.6% in MIT-BIH AFDB, better than the method which only adopted deep features or handcraft features. Experimental results show that our method would be a good choice for the detection of the AF.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Robust Detection Method of Atrial Fibrillation\",\"authors\":\"Jing Hu, Wei Zhao, Yanwu Xu, Dongya Jia, Cong Yan, Hongmei Wang, Tianyuan You\",\"doi\":\"10.22489/CinC.2018.268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial fibrillation (AF) is a common atrial arrhythmia occurring in clinical practice and can be diagnosed using electrocardiogram (ECG) signal. A novel method is proposed to detect normal, AF, non-AF related other abnormal heart rhythms and noisy recordings based on the combination of deep features and handcraft features. We used Computing in Cardiology Challenge 2017 database as training set and MIT-BIH atrial fibrillation database (AFDB) as test set. The proposed algorithm was achieved an accuracy of 96.3%, F1 of 95.5%, sensitivity of 88.7% and specificity of 99.6% in MIT-BIH AFDB, better than the method which only adopted deep features or handcraft features. Experimental results show that our method would be a good choice for the detection of the AF.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

心房颤动(AF)是临床上常见的心房性心律失常,可通过心电图信号进行诊断。提出了一种基于深度特征和手工特征相结合的检测正常、AF和非AF相关的其他异常心律和噪声记录的新方法。我们使用Computing in Cardiology Challenge 2017数据库作为训练集,MIT-BIH房颤数据库(AFDB)作为测试集。该算法在MIT-BIH AFDB中准确率为96.3%,F1为95.5%,灵敏度为88.7%,特异性为99.6%,优于仅采用深度特征或手工特征的方法。实验结果表明,该方法是一种很好的自动对焦检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Detection Method of Atrial Fibrillation
Atrial fibrillation (AF) is a common atrial arrhythmia occurring in clinical practice and can be diagnosed using electrocardiogram (ECG) signal. A novel method is proposed to detect normal, AF, non-AF related other abnormal heart rhythms and noisy recordings based on the combination of deep features and handcraft features. We used Computing in Cardiology Challenge 2017 database as training set and MIT-BIH atrial fibrillation database (AFDB) as test set. The proposed algorithm was achieved an accuracy of 96.3%, F1 of 95.5%, sensitivity of 88.7% and specificity of 99.6% in MIT-BIH AFDB, better than the method which only adopted deep features or handcraft features. Experimental results show that our method would be a good choice for the detection of the AF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信