{"title":"改善氧化石墨烯涂层表面的液体供应途径以提高池沸腾传热性能","authors":"A. Rishi, Anju Gupta, S. Kandlikar","doi":"10.1115/ICNMM2018-7714","DOIUrl":null,"url":null,"abstract":"Graphene is a two-dimensional material that possesses excellent thermal properties and thus has gained an enormous attention in the applications of heat transfer. In this work, we demonstrate the enhancement of boiling heat transfer performance on substrate coated with graphene oxide and/or copper composites. The graphene oxide and/or copper composites were introduced on the substrate by two commonly used coating techniques-dip-coating and a two-step electrochemical deposition method. The focus of this paper is to compare the morphologies, surface properties such as wickability and porosity rendered by these coating methods and compare the resultant heat transfer coefficients and critical heat fluxes. The surfaces were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) techniques. Critical Heat Flux of 220 W/cm2 at the wall superheat of 14.8°C was achieved for the highest 2.5% GO-Cu electrodeposited chip, while CHF of 128 W/cm2 at the wall superheat of 13.2°C was achieved for the 5 minutes dip coated test surface.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving Liquid Supply Pathways on Graphene Oxide Coated Surfaces for Enhanced Pool Boiling Heat Transfer Performance\",\"authors\":\"A. Rishi, Anju Gupta, S. Kandlikar\",\"doi\":\"10.1115/ICNMM2018-7714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene is a two-dimensional material that possesses excellent thermal properties and thus has gained an enormous attention in the applications of heat transfer. In this work, we demonstrate the enhancement of boiling heat transfer performance on substrate coated with graphene oxide and/or copper composites. The graphene oxide and/or copper composites were introduced on the substrate by two commonly used coating techniques-dip-coating and a two-step electrochemical deposition method. The focus of this paper is to compare the morphologies, surface properties such as wickability and porosity rendered by these coating methods and compare the resultant heat transfer coefficients and critical heat fluxes. The surfaces were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) techniques. Critical Heat Flux of 220 W/cm2 at the wall superheat of 14.8°C was achieved for the highest 2.5% GO-Cu electrodeposited chip, while CHF of 128 W/cm2 at the wall superheat of 13.2°C was achieved for the 5 minutes dip coated test surface.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Liquid Supply Pathways on Graphene Oxide Coated Surfaces for Enhanced Pool Boiling Heat Transfer Performance
Graphene is a two-dimensional material that possesses excellent thermal properties and thus has gained an enormous attention in the applications of heat transfer. In this work, we demonstrate the enhancement of boiling heat transfer performance on substrate coated with graphene oxide and/or copper composites. The graphene oxide and/or copper composites were introduced on the substrate by two commonly used coating techniques-dip-coating and a two-step electrochemical deposition method. The focus of this paper is to compare the morphologies, surface properties such as wickability and porosity rendered by these coating methods and compare the resultant heat transfer coefficients and critical heat fluxes. The surfaces were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) techniques. Critical Heat Flux of 220 W/cm2 at the wall superheat of 14.8°C was achieved for the highest 2.5% GO-Cu electrodeposited chip, while CHF of 128 W/cm2 at the wall superheat of 13.2°C was achieved for the 5 minutes dip coated test surface.