基于变压器的光网络报警上下文矢量化表示及其可靠的报警根本原因识别

Jinwei Jia, Danshi Wang, Chunyu Zhang, Huiying Yang, Luyao Guan, Xue Chen, Min Zhang
{"title":"基于变压器的光网络报警上下文矢量化表示及其可靠的报警根本原因识别","authors":"Jinwei Jia, Danshi Wang, Chunyu Zhang, Huiying Yang, Luyao Guan, Xue Chen, Min Zhang","doi":"10.1109/ecoc52684.2021.9606141","DOIUrl":null,"url":null,"abstract":"A Transformer-based alarm context-vectorization representation technique is proposed for alarm root cause identification and correlation analysis. Three common root alarms are identified with an accuracy of 94.47%, and other correlated alarms are obtained with quantified correlation degrees.","PeriodicalId":117375,"journal":{"name":"2021 European Conference on Optical Communication (ECOC)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Transformer-based Alarm Context-Vectorization Representation for Reliable Alarm Root Cause Identification in Optical Networks\",\"authors\":\"Jinwei Jia, Danshi Wang, Chunyu Zhang, Huiying Yang, Luyao Guan, Xue Chen, Min Zhang\",\"doi\":\"10.1109/ecoc52684.2021.9606141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Transformer-based alarm context-vectorization representation technique is proposed for alarm root cause identification and correlation analysis. Three common root alarms are identified with an accuracy of 94.47%, and other correlated alarms are obtained with quantified correlation degrees.\",\"PeriodicalId\":117375,\"journal\":{\"name\":\"2021 European Conference on Optical Communication (ECOC)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Optical Communication (ECOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecoc52684.2021.9606141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Optical Communication (ECOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecoc52684.2021.9606141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于变压器的报警上下文矢量化表示技术,用于报警根本原因识别和相关性分析。识别出3个常见的根告警,准确率为94.47%,并获得了量化关联度的其他相关告警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-based Alarm Context-Vectorization Representation for Reliable Alarm Root Cause Identification in Optical Networks
A Transformer-based alarm context-vectorization representation technique is proposed for alarm root cause identification and correlation analysis. Three common root alarms are identified with an accuracy of 94.47%, and other correlated alarms are obtained with quantified correlation degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信