{"title":"分馏方法及其在辐射和散射问题中的应用","authors":"N. Engheta","doi":"10.1109/MMET.2000.888504","DOIUrl":null,"url":null,"abstract":"Exploring the possible links between the mathematical field of fractional calculus and the electromagnetic theory has been one of the topics of our research interests. We have studied the possibility of bringing the tools of fractional calculus and electromagnetic theory together, and have explored and developed the topic of fractional paradigm in electromagnetic theory. Fractional calculus is a branch of mathematics that addresses the mathematical properties of operation of fractional differentiation and fractional integration operators involving derivatives and integrals to arbitrary non-integer orders. We have applied the tools of fractional calculus in various problems in electromagnetic fields and waves, and have obtained interesting results that highlight certain notable features and promising potential applications of these operators in electromagnetic theory. Moreover, since fractional derivatives/integrals are effectively the result of fractionalization of differentiation and integration operators, we have investigated the notion of fractionalization of some other linear operators in electromagnetic theory. Searching for such operator fractionalization has led us to interesting solutions in radiation and scattering problems.","PeriodicalId":344401,"journal":{"name":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","volume":"387 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fractionalization methods and their applications to radiation and scattering problems\",\"authors\":\"N. Engheta\",\"doi\":\"10.1109/MMET.2000.888504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the possible links between the mathematical field of fractional calculus and the electromagnetic theory has been one of the topics of our research interests. We have studied the possibility of bringing the tools of fractional calculus and electromagnetic theory together, and have explored and developed the topic of fractional paradigm in electromagnetic theory. Fractional calculus is a branch of mathematics that addresses the mathematical properties of operation of fractional differentiation and fractional integration operators involving derivatives and integrals to arbitrary non-integer orders. We have applied the tools of fractional calculus in various problems in electromagnetic fields and waves, and have obtained interesting results that highlight certain notable features and promising potential applications of these operators in electromagnetic theory. Moreover, since fractional derivatives/integrals are effectively the result of fractionalization of differentiation and integration operators, we have investigated the notion of fractionalization of some other linear operators in electromagnetic theory. Searching for such operator fractionalization has led us to interesting solutions in radiation and scattering problems.\",\"PeriodicalId\":344401,\"journal\":{\"name\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"volume\":\"387 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2000.888504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2000.888504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fractionalization methods and their applications to radiation and scattering problems
Exploring the possible links between the mathematical field of fractional calculus and the electromagnetic theory has been one of the topics of our research interests. We have studied the possibility of bringing the tools of fractional calculus and electromagnetic theory together, and have explored and developed the topic of fractional paradigm in electromagnetic theory. Fractional calculus is a branch of mathematics that addresses the mathematical properties of operation of fractional differentiation and fractional integration operators involving derivatives and integrals to arbitrary non-integer orders. We have applied the tools of fractional calculus in various problems in electromagnetic fields and waves, and have obtained interesting results that highlight certain notable features and promising potential applications of these operators in electromagnetic theory. Moreover, since fractional derivatives/integrals are effectively the result of fractionalization of differentiation and integration operators, we have investigated the notion of fractionalization of some other linear operators in electromagnetic theory. Searching for such operator fractionalization has led us to interesting solutions in radiation and scattering problems.