霍克斯处理社交媒体上的事件

Marian-Andrei Rizoiu, Young Lee, Swapnil Mishra
{"title":"霍克斯处理社交媒体上的事件","authors":"Marian-Andrei Rizoiu, Young Lee, Swapnil Mishra","doi":"10.1145/3122865.3122874","DOIUrl":null,"url":null,"abstract":"This chapter provides an accessible introduction for point processes, and especially Hawkes processes, for modeling discrete, inter-dependent events over continuous time. We start by reviewing the definitions and key concepts in point processes. We then introduce the Hawkes process and its event intensity function, as well as schemes for event simulation and parameter estimation. We also describe a practical example drawn from social media data---we show how to model retweet cascades using a Hawkes self-exciting process.We present a design of the memory kernel, and results on estimating parameters and predicting popularity. The code and sample event data are available in an online repository.","PeriodicalId":408764,"journal":{"name":"Frontiers of Multimedia Research","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Hawkes processes for events in social media\",\"authors\":\"Marian-Andrei Rizoiu, Young Lee, Swapnil Mishra\",\"doi\":\"10.1145/3122865.3122874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter provides an accessible introduction for point processes, and especially Hawkes processes, for modeling discrete, inter-dependent events over continuous time. We start by reviewing the definitions and key concepts in point processes. We then introduce the Hawkes process and its event intensity function, as well as schemes for event simulation and parameter estimation. We also describe a practical example drawn from social media data---we show how to model retweet cascades using a Hawkes self-exciting process.We present a design of the memory kernel, and results on estimating parameters and predicting popularity. The code and sample event data are available in an online repository.\",\"PeriodicalId\":408764,\"journal\":{\"name\":\"Frontiers of Multimedia Research\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Multimedia Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3122865.3122874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Multimedia Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3122865.3122874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本章为点过程,特别是霍克斯过程,提供了一个易于理解的介绍,用于在连续时间内对离散的、相互依赖的事件进行建模。我们首先回顾点过程中的定义和关键概念。然后介绍了Hawkes过程及其事件强度函数,以及事件模拟和参数估计方案。我们还描述了一个从社交媒体数据中提取的实际例子——我们展示了如何使用霍克斯自激过程来建模转发级联。本文给出了一个内存内核的设计,并给出了参数估计和流行度预测的结果。代码和示例事件数据可在在线存储库中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hawkes processes for events in social media
This chapter provides an accessible introduction for point processes, and especially Hawkes processes, for modeling discrete, inter-dependent events over continuous time. We start by reviewing the definitions and key concepts in point processes. We then introduce the Hawkes process and its event intensity function, as well as schemes for event simulation and parameter estimation. We also describe a practical example drawn from social media data---we show how to model retweet cascades using a Hawkes self-exciting process.We present a design of the memory kernel, and results on estimating parameters and predicting popularity. The code and sample event data are available in an online repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信