{"title":"快速声光流多焦点激光系统的设计、实现与表征","authors":"A. Zunino, S. Surdo, M. Duocastella","doi":"10.1117/12.2540976","DOIUrl":null,"url":null,"abstract":"Laser-based systems are fundamental tools in several research and industrial fields as important as optical imaging and material processing. They grant high precision and flexibility, though, the throughput of these processes is constrained by their inherent point-scanning nature. An effective solution to this problem is beam parallelization, though, current implementations suffer from lack of flexibility, long response time or optical aberrations. In order to overcome these issues, we propose an original acousto-optofludic (AOF) device that exploits mechanical vibrations in a liquid to diffract light in a comb of multiple beams. In this work, we detail design, implementation, and optical characterization of AOF-based multi-focal laser system. In particular, we show that the main features of the acoustically generated beamlets can be tuned by properly varying frequency, amplitude, and phase of the mechanical oscillations. The application of this device to laser direct writing will enable high throughput processes of various materials in an highly tunable way.","PeriodicalId":405317,"journal":{"name":"Acousto-Optics and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, implementation, and characterization of a fast acousto-optofluidic multi-focal laser system\",\"authors\":\"A. Zunino, S. Surdo, M. Duocastella\",\"doi\":\"10.1117/12.2540976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-based systems are fundamental tools in several research and industrial fields as important as optical imaging and material processing. They grant high precision and flexibility, though, the throughput of these processes is constrained by their inherent point-scanning nature. An effective solution to this problem is beam parallelization, though, current implementations suffer from lack of flexibility, long response time or optical aberrations. In order to overcome these issues, we propose an original acousto-optofludic (AOF) device that exploits mechanical vibrations in a liquid to diffract light in a comb of multiple beams. In this work, we detail design, implementation, and optical characterization of AOF-based multi-focal laser system. In particular, we show that the main features of the acoustically generated beamlets can be tuned by properly varying frequency, amplitude, and phase of the mechanical oscillations. The application of this device to laser direct writing will enable high throughput processes of various materials in an highly tunable way.\",\"PeriodicalId\":405317,\"journal\":{\"name\":\"Acousto-Optics and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acousto-Optics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2540976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acousto-Optics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, implementation, and characterization of a fast acousto-optofluidic multi-focal laser system
Laser-based systems are fundamental tools in several research and industrial fields as important as optical imaging and material processing. They grant high precision and flexibility, though, the throughput of these processes is constrained by their inherent point-scanning nature. An effective solution to this problem is beam parallelization, though, current implementations suffer from lack of flexibility, long response time or optical aberrations. In order to overcome these issues, we propose an original acousto-optofludic (AOF) device that exploits mechanical vibrations in a liquid to diffract light in a comb of multiple beams. In this work, we detail design, implementation, and optical characterization of AOF-based multi-focal laser system. In particular, we show that the main features of the acoustically generated beamlets can be tuned by properly varying frequency, amplitude, and phase of the mechanical oscillations. The application of this device to laser direct writing will enable high throughput processes of various materials in an highly tunable way.