通过一比特量化器在连接网络上进行分布式检测

Shengyu Zhu, Biao Chen
{"title":"通过一比特量化器在连接网络上进行分布式检测","authors":"Shengyu Zhu, Biao Chen","doi":"10.1109/ISIT.2016.7541554","DOIUrl":null,"url":null,"abstract":"This paper considers distributed detection over large scale connected networks with arbitrary topology. Contrasting to the canonical parallel fusion network where a single node has access to the outputs from all other sensors, each node can only exchange one-bit information with its direct neighbors in the present setting. Our approach adopts a novel consensus reaching algorithm using asymmetric bounded quantizers that allow controllable consensus error. Under the Neyman-Pearson criterion, we show that, with each sensor employing an identical one-bit quantizer for local information exchange, this approach achieves the optimal error exponent of centralized detection provided that the algorithm converges. Simulations show that the algorithm converges when the network is large enough.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Distributed detection over connected networks via one-bit quantizer\",\"authors\":\"Shengyu Zhu, Biao Chen\",\"doi\":\"10.1109/ISIT.2016.7541554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers distributed detection over large scale connected networks with arbitrary topology. Contrasting to the canonical parallel fusion network where a single node has access to the outputs from all other sensors, each node can only exchange one-bit information with its direct neighbors in the present setting. Our approach adopts a novel consensus reaching algorithm using asymmetric bounded quantizers that allow controllable consensus error. Under the Neyman-Pearson criterion, we show that, with each sensor employing an identical one-bit quantizer for local information exchange, this approach achieves the optimal error exponent of centralized detection provided that the algorithm converges. Simulations show that the algorithm converges when the network is large enough.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了具有任意拓扑结构的大规模连接网络的分布式检测问题。典型的并行融合网络中,单个节点可以访问所有其他传感器的输出,而在当前的设置中,每个节点只能与其直接相邻节点交换1位信息。我们的方法采用了一种新的共识达成算法,该算法使用非对称有界量化器,允许共识误差可控。在Neyman-Pearson准则下,我们证明了当每个传感器使用相同的1位量化器进行本地信息交换时,该方法在算法收敛的前提下获得了集中检测的最佳误差指数。仿真结果表明,当网络足够大时,算法收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed detection over connected networks via one-bit quantizer
This paper considers distributed detection over large scale connected networks with arbitrary topology. Contrasting to the canonical parallel fusion network where a single node has access to the outputs from all other sensors, each node can only exchange one-bit information with its direct neighbors in the present setting. Our approach adopts a novel consensus reaching algorithm using asymmetric bounded quantizers that allow controllable consensus error. Under the Neyman-Pearson criterion, we show that, with each sensor employing an identical one-bit quantizer for local information exchange, this approach achieves the optimal error exponent of centralized detection provided that the algorithm converges. Simulations show that the algorithm converges when the network is large enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信