不确定条件下球队重组的蒙特卡罗规划:模型与性质

Jonathan Cohen, A. Mouaddib
{"title":"不确定条件下球队重组的蒙特卡罗规划:模型与性质","authors":"Jonathan Cohen, A. Mouaddib","doi":"10.1109/ICTAI.2018.00077","DOIUrl":null,"url":null,"abstract":"Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimally plan in sequentially decentralized multiagent systems under uncertainty. In this work, we focus our analysis on team formation and reformation in Decentralized POMDPs with a new model coined Team-POMDPs. We present some interesting structural properties of this model inherited from the field of cooperative game theory. We introduce a Monte Carlo-based planning algorithm to learn locally optimal team-reformation policies that tell our agents how to dynamically rearrange in order to better deal with the evolution of the task at hand. By reforming the team during execution, our experiments show that we are able to achieve higher expected long-term rewards than with stationary teams.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties\",\"authors\":\"Jonathan Cohen, A. Mouaddib\",\"doi\":\"10.1109/ICTAI.2018.00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimally plan in sequentially decentralized multiagent systems under uncertainty. In this work, we focus our analysis on team formation and reformation in Decentralized POMDPs with a new model coined Team-POMDPs. We present some interesting structural properties of this model inherited from the field of cooperative game theory. We introduce a Monte Carlo-based planning algorithm to learn locally optimal team-reformation policies that tell our agents how to dynamically rearrange in order to better deal with the evolution of the task at hand. By reforming the team during execution, our experiments show that we are able to achieve higher expected long-term rewards than with stationary teams.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分散系统中的团队合作在最近的人工智能进步中发挥着核心作用,例如在灾难响应中的应用。分散部分可观察马尔可夫决策过程(deco - pomdp)已成为研究不确定性下顺序分散多智能体系统的标准数学框架。在这项工作中,我们重点分析了分散的pomdp中团队的形成和改革,并提出了一个新的模型——团队- pomdp。我们从合作博弈论领域继承了该模型的一些有趣的结构性质。我们引入了一种基于蒙特卡罗的规划算法来学习局部最优的团队改革策略,这些策略告诉我们的智能体如何动态地重新安排,以便更好地处理手头任务的演变。通过在执行过程中改革团队,我们的实验表明,我们能够获得比固定团队更高的预期长期回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties
Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimally plan in sequentially decentralized multiagent systems under uncertainty. In this work, we focus our analysis on team formation and reformation in Decentralized POMDPs with a new model coined Team-POMDPs. We present some interesting structural properties of this model inherited from the field of cooperative game theory. We introduce a Monte Carlo-based planning algorithm to learn locally optimal team-reformation policies that tell our agents how to dynamically rearrange in order to better deal with the evolution of the task at hand. By reforming the team during execution, our experiments show that we are able to achieve higher expected long-term rewards than with stationary teams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信