{"title":"支持向量机与符号解释","authors":"Haydemar Núñez, C. Angulo, Andreu Català","doi":"10.1109/SBRN.2002.1181456","DOIUrl":null,"url":null,"abstract":"In this work, a procedure for rule extraction from support vector machines (SVMs) is proposed. Our method first determines the prototype vectors by using k-means. Then, these vectors are combined with the support vectors using geometric methods to define ellipsoids in the input space, which are later translated to if-then rules. In this way, it is possible to give an interpretation to the knowledge acquired by the SVM. On the other hand, the extracted rules render possible the integration of SVMs with symbolic AI systems.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Support vector machines with symbolic interpretation\",\"authors\":\"Haydemar Núñez, C. Angulo, Andreu Català\",\"doi\":\"10.1109/SBRN.2002.1181456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a procedure for rule extraction from support vector machines (SVMs) is proposed. Our method first determines the prototype vectors by using k-means. Then, these vectors are combined with the support vectors using geometric methods to define ellipsoids in the input space, which are later translated to if-then rules. In this way, it is possible to give an interpretation to the knowledge acquired by the SVM. On the other hand, the extracted rules render possible the integration of SVMs with symbolic AI systems.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Support vector machines with symbolic interpretation
In this work, a procedure for rule extraction from support vector machines (SVMs) is proposed. Our method first determines the prototype vectors by using k-means. Then, these vectors are combined with the support vectors using geometric methods to define ellipsoids in the input space, which are later translated to if-then rules. In this way, it is possible to give an interpretation to the knowledge acquired by the SVM. On the other hand, the extracted rules render possible the integration of SVMs with symbolic AI systems.