利用遗传算法构建最优神经网络进行易损模块检测

R. Hochman, T. Khoshgoftaar, E. B. Allen, J. Hudepohl
{"title":"利用遗传算法构建最优神经网络进行易损模块检测","authors":"R. Hochman, T. Khoshgoftaar, E. B. Allen, J. Hudepohl","doi":"10.1109/ISSRE.1996.558759","DOIUrl":null,"url":null,"abstract":"The genetic algorithm is applied to developing optimal or near optimal backpropagation neural networks for fault-prone/not-fault-prone classification of software modules. The algorithm considers each network in a population of neural networks as a potential solution to the optimal classification problem. Variables governing the learning and other parameters and network architecture are represented as substrings (genes) in a machine-level bit string (chromosome). When the population undergoes simulated evolution using genetic operators-selection based on a fitness function, crossover, and mutation-the average performance increases in successive generations. We found that, on the same data, compared with the best manually developed networks, evolved networks produced improved classifications in considerably less time, with no human effort, and with greater confidence in their optimality or near optimality. Strategies for devising a fitness function specific to the problem are explored and discussed.","PeriodicalId":441362,"journal":{"name":"Proceedings of ISSRE '96: 7th International Symposium on Software Reliability Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Using the genetic algorithm to build optimal neural networks for fault-prone module detection\",\"authors\":\"R. Hochman, T. Khoshgoftaar, E. B. Allen, J. Hudepohl\",\"doi\":\"10.1109/ISSRE.1996.558759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genetic algorithm is applied to developing optimal or near optimal backpropagation neural networks for fault-prone/not-fault-prone classification of software modules. The algorithm considers each network in a population of neural networks as a potential solution to the optimal classification problem. Variables governing the learning and other parameters and network architecture are represented as substrings (genes) in a machine-level bit string (chromosome). When the population undergoes simulated evolution using genetic operators-selection based on a fitness function, crossover, and mutation-the average performance increases in successive generations. We found that, on the same data, compared with the best manually developed networks, evolved networks produced improved classifications in considerably less time, with no human effort, and with greater confidence in their optimality or near optimality. Strategies for devising a fitness function specific to the problem are explored and discussed.\",\"PeriodicalId\":441362,\"journal\":{\"name\":\"Proceedings of ISSRE '96: 7th International Symposium on Software Reliability Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ISSRE '96: 7th International Symposium on Software Reliability Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.1996.558759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ISSRE '96: 7th International Symposium on Software Reliability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.1996.558759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

将遗传算法应用于开发最优或接近最优的反向传播神经网络,用于软件模块的易故障/非易故障分类。该算法将神经网络群体中的每个网络视为最优分类问题的潜在解决方案。控制学习和其他参数以及网络架构的变量表示为机器级位串(染色体)中的子串(基因)。当种群使用遗传算子——基于适应度函数、交叉和突变的选择——进行模拟进化时,平均表现在连续几代中有所提高。我们发现,在相同的数据上,与最好的人工开发的网络相比,进化的网络在相当短的时间内产生了改进的分类,不需要人工努力,并且对其最优性或接近最优性更有信心。探讨了针对该问题设计适应度函数的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using the genetic algorithm to build optimal neural networks for fault-prone module detection
The genetic algorithm is applied to developing optimal or near optimal backpropagation neural networks for fault-prone/not-fault-prone classification of software modules. The algorithm considers each network in a population of neural networks as a potential solution to the optimal classification problem. Variables governing the learning and other parameters and network architecture are represented as substrings (genes) in a machine-level bit string (chromosome). When the population undergoes simulated evolution using genetic operators-selection based on a fitness function, crossover, and mutation-the average performance increases in successive generations. We found that, on the same data, compared with the best manually developed networks, evolved networks produced improved classifications in considerably less time, with no human effort, and with greater confidence in their optimality or near optimality. Strategies for devising a fitness function specific to the problem are explored and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信