{"title":"使用Tsetlin机器的自定时强化学习","authors":"A. Wheeldon, A. Yakovlev, R. Shafik","doi":"10.1109/ASYNC48570.2021.00014","DOIUrl":null,"url":null,"abstract":"We present a hardware design for the learning datapath of the Tsetlin machine algorithm, along with a latency analysis of the inference datapath. In order to generate a low energy hardware which is suitable for pervasive artificial intelligence applications, we use a mixture of asynchronous design techniques—including Petri nets, signal transition graphs, dualrail and bundled-data. The work builds on previous design of the inference hardware, and includes an in-depth breakdown of the automaton feedback, probability generation and Tsetlin automata. Results illustrate the advantages of asynchronous design in applications such as personalized healthcare and battery-powered internet of things devices, where energy is limited and latency is an important figure of merit. Challenges of static timing analysis in asynchronous circuits are also addressed.","PeriodicalId":314811,"journal":{"name":"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Self-timed Reinforcement Learning using Tsetlin Machine\",\"authors\":\"A. Wheeldon, A. Yakovlev, R. Shafik\",\"doi\":\"10.1109/ASYNC48570.2021.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a hardware design for the learning datapath of the Tsetlin machine algorithm, along with a latency analysis of the inference datapath. In order to generate a low energy hardware which is suitable for pervasive artificial intelligence applications, we use a mixture of asynchronous design techniques—including Petri nets, signal transition graphs, dualrail and bundled-data. The work builds on previous design of the inference hardware, and includes an in-depth breakdown of the automaton feedback, probability generation and Tsetlin automata. Results illustrate the advantages of asynchronous design in applications such as personalized healthcare and battery-powered internet of things devices, where energy is limited and latency is an important figure of merit. Challenges of static timing analysis in asynchronous circuits are also addressed.\",\"PeriodicalId\":314811,\"journal\":{\"name\":\"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC48570.2021.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC48570.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-timed Reinforcement Learning using Tsetlin Machine
We present a hardware design for the learning datapath of the Tsetlin machine algorithm, along with a latency analysis of the inference datapath. In order to generate a low energy hardware which is suitable for pervasive artificial intelligence applications, we use a mixture of asynchronous design techniques—including Petri nets, signal transition graphs, dualrail and bundled-data. The work builds on previous design of the inference hardware, and includes an in-depth breakdown of the automaton feedback, probability generation and Tsetlin automata. Results illustrate the advantages of asynchronous design in applications such as personalized healthcare and battery-powered internet of things devices, where energy is limited and latency is an important figure of merit. Challenges of static timing analysis in asynchronous circuits are also addressed.