电磁成像技术中的偏移与反演

M. Zhdanov, P. Traynin
{"title":"电磁成像技术中的偏移与反演","authors":"M. Zhdanov, P. Traynin","doi":"10.5636/JGG.49.1415","DOIUrl":null,"url":null,"abstract":"One of the most challenging problems in electromagnetic (EM) geophysical methods is developing fast and stable methods of imaging inhomogeneous underground structures using EM data. In our previous publications we developed a novel approach to this problem, using EM migration. In this paper we demonstrate that there is a very close connection between the method of EM migration and the solution of the conventional EM inverse problem. Actually, we show that migration is an approximate inversion. It realizes the first iteration in the inversion algorithm, based on the minimization of the residual field energy flow through the profile of observations. This new theoretical result opens a way for formulating a new imaging condition. We compare this new imaging condition with the traditional one, obtained for simplified geoelectrical models of the subsurface structures. This result also leads to the construction of a solution of the inverse EM problem, based on iterative EM migration in the frequency domain, and gradient (or conjugate gradient) search for the optimal geoelectrical model. However, the authors have found that in the framework of this method, even the first iteration, based on the migration of the residual field, generates a reasonable geoelectrical image of the subsurface structure.","PeriodicalId":156587,"journal":{"name":"Journal of geomagnetism and geoelectricity","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Migration versus inversion in electromagnetic imaging technique\",\"authors\":\"M. Zhdanov, P. Traynin\",\"doi\":\"10.5636/JGG.49.1415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most challenging problems in electromagnetic (EM) geophysical methods is developing fast and stable methods of imaging inhomogeneous underground structures using EM data. In our previous publications we developed a novel approach to this problem, using EM migration. In this paper we demonstrate that there is a very close connection between the method of EM migration and the solution of the conventional EM inverse problem. Actually, we show that migration is an approximate inversion. It realizes the first iteration in the inversion algorithm, based on the minimization of the residual field energy flow through the profile of observations. This new theoretical result opens a way for formulating a new imaging condition. We compare this new imaging condition with the traditional one, obtained for simplified geoelectrical models of the subsurface structures. This result also leads to the construction of a solution of the inverse EM problem, based on iterative EM migration in the frequency domain, and gradient (or conjugate gradient) search for the optimal geoelectrical model. However, the authors have found that in the framework of this method, even the first iteration, based on the migration of the residual field, generates a reasonable geoelectrical image of the subsurface structure.\",\"PeriodicalId\":156587,\"journal\":{\"name\":\"Journal of geomagnetism and geoelectricity\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of geomagnetism and geoelectricity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5636/JGG.49.1415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geomagnetism and geoelectricity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5636/JGG.49.1415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

电磁地球物理方法中最具挑战性的问题之一是开发快速、稳定的利用电磁数据成像非均匀地下结构的方法。在我们之前的出版物中,我们开发了一种新的方法来解决这个问题,使用EM迁移。本文证明了电磁偏移方法与传统电磁反演问题的求解之间有着密切的联系。实际上,我们证明了迁移是一个近似的逆过程。基于观测剖面的残场能量流最小化,实现了反演算法的第一次迭代。这一新的理论结果为形成新的成像条件开辟了一条道路。我们将这种新的成像条件与传统的简化地下构造地电模型的成像条件进行了比较。这一结果还导致了基于频域迭代EM偏移和梯度(或共轭梯度)搜索最优地电模型的逆EM问题解的构建。然而,作者发现,在这种方法的框架下,即使是基于残差场偏移的第一次迭代,也能产生合理的地下结构地电图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Migration versus inversion in electromagnetic imaging technique
One of the most challenging problems in electromagnetic (EM) geophysical methods is developing fast and stable methods of imaging inhomogeneous underground structures using EM data. In our previous publications we developed a novel approach to this problem, using EM migration. In this paper we demonstrate that there is a very close connection between the method of EM migration and the solution of the conventional EM inverse problem. Actually, we show that migration is an approximate inversion. It realizes the first iteration in the inversion algorithm, based on the minimization of the residual field energy flow through the profile of observations. This new theoretical result opens a way for formulating a new imaging condition. We compare this new imaging condition with the traditional one, obtained for simplified geoelectrical models of the subsurface structures. This result also leads to the construction of a solution of the inverse EM problem, based on iterative EM migration in the frequency domain, and gradient (or conjugate gradient) search for the optimal geoelectrical model. However, the authors have found that in the framework of this method, even the first iteration, based on the migration of the residual field, generates a reasonable geoelectrical image of the subsurface structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信