数据挖掘和生物信息学工作负载的架构表征研究

Berkin Özisikyilmaz, R. Narayanan, Joseph Zambreno, G. Memik, A. Choudhary
{"title":"数据挖掘和生物信息学工作负载的架构表征研究","authors":"Berkin Özisikyilmaz, R. Narayanan, Joseph Zambreno, G. Memik, A. Choudhary","doi":"10.1109/IISWC.2006.302730","DOIUrl":null,"url":null,"abstract":"Data mining is the process of automatically finding implicit, previously unknown, and potentially useful information from large volumes of data. Advances in data extraction techniques have resulted in tremendous increase in the input data size of data mining applications. Data mining systems, on the other hand, have been unable to maintain the same rate of growth. Therefore, there is an increasing need to understand the bottlenecks associated with the execution of these applications in modern architectures. In this paper, we present MineBench, a publicly available benchmark suite containing fifteen representative data mining applications belonging to various categories: classification, clustering, association rule mining and optimization. First, we highlight the uniqueness of data mining applications. Subsequently, we evaluate the MineBench applications on an 8-way shared memory (SMP) machine and analyze important performance characteristics such as L1 and L2 cache miss rates, branch misprediction rates","PeriodicalId":222041,"journal":{"name":"2006 IEEE International Symposium on Workload Characterization","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"An Architectural Characterization Study of Data Mining and Bioinformatics Workloads\",\"authors\":\"Berkin Özisikyilmaz, R. Narayanan, Joseph Zambreno, G. Memik, A. Choudhary\",\"doi\":\"10.1109/IISWC.2006.302730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is the process of automatically finding implicit, previously unknown, and potentially useful information from large volumes of data. Advances in data extraction techniques have resulted in tremendous increase in the input data size of data mining applications. Data mining systems, on the other hand, have been unable to maintain the same rate of growth. Therefore, there is an increasing need to understand the bottlenecks associated with the execution of these applications in modern architectures. In this paper, we present MineBench, a publicly available benchmark suite containing fifteen representative data mining applications belonging to various categories: classification, clustering, association rule mining and optimization. First, we highlight the uniqueness of data mining applications. Subsequently, we evaluate the MineBench applications on an 8-way shared memory (SMP) machine and analyze important performance characteristics such as L1 and L2 cache miss rates, branch misprediction rates\",\"PeriodicalId\":222041,\"journal\":{\"name\":\"2006 IEEE International Symposium on Workload Characterization\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Workload Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2006.302730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2006.302730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

数据挖掘是从大量数据中自动发现隐含的、以前未知的和潜在有用的信息的过程。数据提取技术的进步导致数据挖掘应用程序的输入数据大小急剧增加。另一方面,数据挖掘系统一直无法保持同样的增长速度。因此,越来越需要了解在现代体系结构中与这些应用程序的执行相关的瓶颈。在本文中,我们介绍了MineBench,这是一个公开可用的基准套件,包含15个具有代表性的数据挖掘应用程序,属于不同的类别:分类、聚类、关联规则挖掘和优化。首先,我们强调数据挖掘应用的独特性。随后,我们在一台8路共享内存(SMP)机器上评估了MineBench应用程序,并分析了重要的性能特征,如L1和L2缓存丢失率、分支错误预测率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Architectural Characterization Study of Data Mining and Bioinformatics Workloads
Data mining is the process of automatically finding implicit, previously unknown, and potentially useful information from large volumes of data. Advances in data extraction techniques have resulted in tremendous increase in the input data size of data mining applications. Data mining systems, on the other hand, have been unable to maintain the same rate of growth. Therefore, there is an increasing need to understand the bottlenecks associated with the execution of these applications in modern architectures. In this paper, we present MineBench, a publicly available benchmark suite containing fifteen representative data mining applications belonging to various categories: classification, clustering, association rule mining and optimization. First, we highlight the uniqueness of data mining applications. Subsequently, we evaluate the MineBench applications on an 8-way shared memory (SMP) machine and analyze important performance characteristics such as L1 and L2 cache miss rates, branch misprediction rates
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信