{"title":"具有变点状态的LC模型","authors":"Vered Shapovalov, Z. Landsman, U. Makov","doi":"10.2139/ssrn.3319712","DOIUrl":null,"url":null,"abstract":"This paper extends the widely used Lee Carter (LC) model (Lee & Carter, 1992) for mortality projection. We suggest a Bayesian change-points model for the time parameters in the Bayesian extension of the LC model suggested in Czado et al. (2005). In particular, we modify the simple linear trend to a piecewise linear trend. This model accounts for changes in trend over time and it is inspired by the Bayesian random level{shift model of McCulloch & Tsay (1993). In a validation-based examination, the proposed change-points model produces smaller prediction errors compared to the autoregressive model for the time parameters in Czado et al. (2005). Notably, this is true for all populations considered.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A LC Model With Change-Points Regime\",\"authors\":\"Vered Shapovalov, Z. Landsman, U. Makov\",\"doi\":\"10.2139/ssrn.3319712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the widely used Lee Carter (LC) model (Lee & Carter, 1992) for mortality projection. We suggest a Bayesian change-points model for the time parameters in the Bayesian extension of the LC model suggested in Czado et al. (2005). In particular, we modify the simple linear trend to a piecewise linear trend. This model accounts for changes in trend over time and it is inspired by the Bayesian random level{shift model of McCulloch & Tsay (1993). In a validation-based examination, the proposed change-points model produces smaller prediction errors compared to the autoregressive model for the time parameters in Czado et al. (2005). Notably, this is true for all populations considered.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3319712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3319712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文扩展了广泛使用的Lee Carter (LC)模型(Lee &Carter, 1992)用于死亡率预测。在Czado等人(2005)提出的LC模型的贝叶斯扩展中,我们建议使用贝叶斯变点模型来表示时间参数。特别地,我们将简单的线性趋势修改为分段线性趋势。该模型解释了随时间变化的趋势,其灵感来自于麦卡洛克的贝叶斯随机水平偏移模型。-蔡(1993)。在基于验证的检验中,与Czado等人(2005)的自回归模型相比,所提出的变化点模型对时间参数的预测误差更小。值得注意的是,这对所有被考虑的人群都是正确的。
This paper extends the widely used Lee Carter (LC) model (Lee & Carter, 1992) for mortality projection. We suggest a Bayesian change-points model for the time parameters in the Bayesian extension of the LC model suggested in Czado et al. (2005). In particular, we modify the simple linear trend to a piecewise linear trend. This model accounts for changes in trend over time and it is inspired by the Bayesian random level{shift model of McCulloch & Tsay (1993). In a validation-based examination, the proposed change-points model produces smaller prediction errors compared to the autoregressive model for the time parameters in Czado et al. (2005). Notably, this is true for all populations considered.