基于全局信息的知识图谱嵌入模型

Zhe Wang, Zhongwen Guo
{"title":"基于全局信息的知识图谱嵌入模型","authors":"Zhe Wang, Zhongwen Guo","doi":"10.1109/CACML55074.2022.00077","DOIUrl":null,"url":null,"abstract":"Recently, knowledge graph embedding model based on Graph Attention Network (GAT) has shown great potential in link prediction task. However, the existing GAT based models ignore the global information in the neighborhood. We propose GGAT, a knowledge graph embedding model based on global information. The encoding ability of GGAT is enhanced by using global information. Meanwhile, we employ multi-head attention mechanism to improve GGAT's perception of the interaction between entities in the neighborhood. In addition, GGAT uses residual structure to improve the stability of the model and the ability to perceive remote semantic connections. Experiments on two link prediction benchmarks demonstrate the proposed key capabilities of GGAT. Moreover, we set a new state-of-the-art on a knowledge graph dataset.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GGAT: Knowledge Graph Embedding Model via Global Information\",\"authors\":\"Zhe Wang, Zhongwen Guo\",\"doi\":\"10.1109/CACML55074.2022.00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, knowledge graph embedding model based on Graph Attention Network (GAT) has shown great potential in link prediction task. However, the existing GAT based models ignore the global information in the neighborhood. We propose GGAT, a knowledge graph embedding model based on global information. The encoding ability of GGAT is enhanced by using global information. Meanwhile, we employ multi-head attention mechanism to improve GGAT's perception of the interaction between entities in the neighborhood. In addition, GGAT uses residual structure to improve the stability of the model and the ability to perceive remote semantic connections. Experiments on two link prediction benchmarks demonstrate the proposed key capabilities of GGAT. Moreover, we set a new state-of-the-art on a knowledge graph dataset.\",\"PeriodicalId\":137505,\"journal\":{\"name\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACML55074.2022.00077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于图注意网络(GAT)的知识图嵌入模型在链接预测任务中显示出巨大的潜力。然而,现有的基于GAT的模型忽略了邻域的全局信息。提出了一种基于全局信息的知识图嵌入模型GGAT。利用全局信息增强了GGAT的编码能力。同时,我们采用多头注意机制来提高GGAT对邻域实体之间交互的感知。此外,GGAT还利用残差结构来提高模型的稳定性和感知远程语义连接的能力。在两个链路预测基准上的实验验证了所提出的GGAT关键功能。此外,我们在知识图谱数据集上设置了一个新的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GGAT: Knowledge Graph Embedding Model via Global Information
Recently, knowledge graph embedding model based on Graph Attention Network (GAT) has shown great potential in link prediction task. However, the existing GAT based models ignore the global information in the neighborhood. We propose GGAT, a knowledge graph embedding model based on global information. The encoding ability of GGAT is enhanced by using global information. Meanwhile, we employ multi-head attention mechanism to improve GGAT's perception of the interaction between entities in the neighborhood. In addition, GGAT uses residual structure to improve the stability of the model and the ability to perceive remote semantic connections. Experiments on two link prediction benchmarks demonstrate the proposed key capabilities of GGAT. Moreover, we set a new state-of-the-art on a knowledge graph dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信