{"title":"多变量时间序列分析与建模的多变量传导神经模糊推理系统评价","authors":"H. Widiputra","doi":"10.1145/3427423.3427428","DOIUrl":null,"url":null,"abstract":"Multivariate Transductive Neuro-Fuzzy Inference System model, named the mTNFI is a previously proposed conceptual transductive approach designed for analysis and modelling of multivariate time-series data. In this study, we revisit, implement and evaluate the mTNFI model potential for patterns of relationship extraction from a collection of interrelated time-series data. Results of conducted assessment confirm the mTNFI capability in recognizing patterns of relationship and then to model them in human-readable form, i.e. fuzzy rules. Additionally, a comparative analysis also show the superiority of the mTNFI model in comparison to other widely known time-series forecasting techniques when being used to predict future values.","PeriodicalId":120194,"journal":{"name":"Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of multivariate transductive neuro-fuzzy inference system for multivariate time-series analysis and modelling\",\"authors\":\"H. Widiputra\",\"doi\":\"10.1145/3427423.3427428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate Transductive Neuro-Fuzzy Inference System model, named the mTNFI is a previously proposed conceptual transductive approach designed for analysis and modelling of multivariate time-series data. In this study, we revisit, implement and evaluate the mTNFI model potential for patterns of relationship extraction from a collection of interrelated time-series data. Results of conducted assessment confirm the mTNFI capability in recognizing patterns of relationship and then to model them in human-readable form, i.e. fuzzy rules. Additionally, a comparative analysis also show the superiority of the mTNFI model in comparison to other widely known time-series forecasting techniques when being used to predict future values.\",\"PeriodicalId\":120194,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3427423.3427428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3427423.3427428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of multivariate transductive neuro-fuzzy inference system for multivariate time-series analysis and modelling
Multivariate Transductive Neuro-Fuzzy Inference System model, named the mTNFI is a previously proposed conceptual transductive approach designed for analysis and modelling of multivariate time-series data. In this study, we revisit, implement and evaluate the mTNFI model potential for patterns of relationship extraction from a collection of interrelated time-series data. Results of conducted assessment confirm the mTNFI capability in recognizing patterns of relationship and then to model them in human-readable form, i.e. fuzzy rules. Additionally, a comparative analysis also show the superiority of the mTNFI model in comparison to other widely known time-series forecasting techniques when being used to predict future values.