将光纤传感器集成到器官芯片设备中,实现无标签细胞活力分析

Sanzhar Shakarim, D. Tosi, G. Kulsharova
{"title":"将光纤传感器集成到器官芯片设备中,实现无标签细胞活力分析","authors":"Sanzhar Shakarim, D. Tosi, G. Kulsharova","doi":"10.1109/SAS54819.2022.9881355","DOIUrl":null,"url":null,"abstract":"In this paper, we report a microfluidic polymer organ-on-a-chip device integrated with a fiber optic sensor towards online monitoring of cell viability on-chip. As preliminary model applications, absorbance-based measurements of various concentrations of sucrose solution and of AlluraRed dye in the chip were carried out. Absorbance peaks were correlated to concentrations of the solutions and analyzed. Accurate sensing of analytes in a continuous flow through the device was achieved. Fiber optic sensor integrated microfluidic chip can be used as a label-free assay for cell viability measurements and other applications based on change of absorbance and luminescence values of the cellular microenvironment in organ-on-a-chip devices.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of fiber optic sensors in organ-on-a-chip devices towards label-free cell viability assays\",\"authors\":\"Sanzhar Shakarim, D. Tosi, G. Kulsharova\",\"doi\":\"10.1109/SAS54819.2022.9881355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a microfluidic polymer organ-on-a-chip device integrated with a fiber optic sensor towards online monitoring of cell viability on-chip. As preliminary model applications, absorbance-based measurements of various concentrations of sucrose solution and of AlluraRed dye in the chip were carried out. Absorbance peaks were correlated to concentrations of the solutions and analyzed. Accurate sensing of analytes in a continuous flow through the device was achieved. Fiber optic sensor integrated microfluidic chip can be used as a label-free assay for cell viability measurements and other applications based on change of absorbance and luminescence values of the cellular microenvironment in organ-on-a-chip devices.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们报道了一种集成了光纤传感器的微流控聚合物器官芯片装置,用于芯片上细胞活力的在线监测。作为初步的模型应用,对芯片中不同浓度的蔗糖溶液和AlluraRed染料进行了基于吸光度的测量。吸光度峰与溶液浓度相关,并进行分析。在通过该装置的连续流动中实现了对分析物的精确传感。光纤传感器集成微流控芯片可以作为一种基于细胞微环境吸光度和发光值变化的无标记检测方法,用于细胞活力测量和其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of fiber optic sensors in organ-on-a-chip devices towards label-free cell viability assays
In this paper, we report a microfluidic polymer organ-on-a-chip device integrated with a fiber optic sensor towards online monitoring of cell viability on-chip. As preliminary model applications, absorbance-based measurements of various concentrations of sucrose solution and of AlluraRed dye in the chip were carried out. Absorbance peaks were correlated to concentrations of the solutions and analyzed. Accurate sensing of analytes in a continuous flow through the device was achieved. Fiber optic sensor integrated microfluidic chip can be used as a label-free assay for cell viability measurements and other applications based on change of absorbance and luminescence values of the cellular microenvironment in organ-on-a-chip devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信