{"title":"将光纤传感器集成到器官芯片设备中,实现无标签细胞活力分析","authors":"Sanzhar Shakarim, D. Tosi, G. Kulsharova","doi":"10.1109/SAS54819.2022.9881355","DOIUrl":null,"url":null,"abstract":"In this paper, we report a microfluidic polymer organ-on-a-chip device integrated with a fiber optic sensor towards online monitoring of cell viability on-chip. As preliminary model applications, absorbance-based measurements of various concentrations of sucrose solution and of AlluraRed dye in the chip were carried out. Absorbance peaks were correlated to concentrations of the solutions and analyzed. Accurate sensing of analytes in a continuous flow through the device was achieved. Fiber optic sensor integrated microfluidic chip can be used as a label-free assay for cell viability measurements and other applications based on change of absorbance and luminescence values of the cellular microenvironment in organ-on-a-chip devices.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of fiber optic sensors in organ-on-a-chip devices towards label-free cell viability assays\",\"authors\":\"Sanzhar Shakarim, D. Tosi, G. Kulsharova\",\"doi\":\"10.1109/SAS54819.2022.9881355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a microfluidic polymer organ-on-a-chip device integrated with a fiber optic sensor towards online monitoring of cell viability on-chip. As preliminary model applications, absorbance-based measurements of various concentrations of sucrose solution and of AlluraRed dye in the chip were carried out. Absorbance peaks were correlated to concentrations of the solutions and analyzed. Accurate sensing of analytes in a continuous flow through the device was achieved. Fiber optic sensor integrated microfluidic chip can be used as a label-free assay for cell viability measurements and other applications based on change of absorbance and luminescence values of the cellular microenvironment in organ-on-a-chip devices.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of fiber optic sensors in organ-on-a-chip devices towards label-free cell viability assays
In this paper, we report a microfluidic polymer organ-on-a-chip device integrated with a fiber optic sensor towards online monitoring of cell viability on-chip. As preliminary model applications, absorbance-based measurements of various concentrations of sucrose solution and of AlluraRed dye in the chip were carried out. Absorbance peaks were correlated to concentrations of the solutions and analyzed. Accurate sensing of analytes in a continuous flow through the device was achieved. Fiber optic sensor integrated microfluidic chip can be used as a label-free assay for cell viability measurements and other applications based on change of absorbance and luminescence values of the cellular microenvironment in organ-on-a-chip devices.