基于生成对抗网络的高分辨率多光谱卫星图像阴影检测

Giorgio Morales, D. Arteaga, Samuel G. Huamán, J. Telles, Walther Palomino
{"title":"基于生成对抗网络的高分辨率多光谱卫星图像阴影检测","authors":"Giorgio Morales, D. Arteaga, Samuel G. Huamán, J. Telles, Walther Palomino","doi":"10.1109/INTERCON.2018.8526416","DOIUrl":null,"url":null,"abstract":"Detecting shadows in high-resolution satellite images is a challenging task due to the fact that shadows can easily be mistaken for low reflectance soil or water and that such images have limited spectral bands. In this work, we propose a semantic level shadow segmentation by using generative adversarial networks and created a dataset of pre-processed images for training, validation and test. In this way, we trained a generator network that produces shadow masks with condition on a satellite image patch and tries to fool a discriminator, which is trained to discern if a given mask comes from the ground truth or from the generator model. The results achieve an accuracy of 95.85% and a Kappa coefficient of 91.76%, which is superior to the compared methods.","PeriodicalId":305576,"journal":{"name":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Shadow Detection in High-Resolution Multispectral Satellite Imagery Using Generative Adversarial Networks\",\"authors\":\"Giorgio Morales, D. Arteaga, Samuel G. Huamán, J. Telles, Walther Palomino\",\"doi\":\"10.1109/INTERCON.2018.8526416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting shadows in high-resolution satellite images is a challenging task due to the fact that shadows can easily be mistaken for low reflectance soil or water and that such images have limited spectral bands. In this work, we propose a semantic level shadow segmentation by using generative adversarial networks and created a dataset of pre-processed images for training, validation and test. In this way, we trained a generator network that produces shadow masks with condition on a satellite image patch and tries to fool a discriminator, which is trained to discern if a given mask comes from the ground truth or from the generator model. The results achieve an accuracy of 95.85% and a Kappa coefficient of 91.76%, which is superior to the compared methods.\",\"PeriodicalId\":305576,\"journal\":{\"name\":\"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"volume\":\"384 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERCON.2018.8526416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERCON.2018.8526416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在高分辨率卫星图像中检测阴影是一项具有挑战性的任务,因为阴影很容易被误认为是低反射率的土壤或水,而且这些图像的光谱带有限。在这项工作中,我们通过使用生成对抗网络提出了语义级阴影分割,并创建了一个用于训练、验证和测试的预处理图像数据集。通过这种方式,我们训练了一个生成器网络,该网络在卫星图像补丁上产生有条件的阴影掩模,并试图欺骗鉴别器,该鉴别器被训练来辨别给定的掩模是来自地面真相还是来自生成器模型。结果表明,该方法的准确率为95.85%,Kappa系数为91.76%,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shadow Detection in High-Resolution Multispectral Satellite Imagery Using Generative Adversarial Networks
Detecting shadows in high-resolution satellite images is a challenging task due to the fact that shadows can easily be mistaken for low reflectance soil or water and that such images have limited spectral bands. In this work, we propose a semantic level shadow segmentation by using generative adversarial networks and created a dataset of pre-processed images for training, validation and test. In this way, we trained a generator network that produces shadow masks with condition on a satellite image patch and tries to fool a discriminator, which is trained to discern if a given mask comes from the ground truth or from the generator model. The results achieve an accuracy of 95.85% and a Kappa coefficient of 91.76%, which is superior to the compared methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信