通过嵌套分解求解线性系统

N. Alon, R. Yuster
{"title":"通过嵌套分解求解线性系统","authors":"N. Alon, R. Yuster","doi":"10.1109/FOCS.2010.28","DOIUrl":null,"url":null,"abstract":"The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal method for solving a linear system Ax=b where A is a symmetric positive definite matrix. The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection method to apply to any non-singular well-separable matrix over any field. The running times we obtain essentially match those of the nested dissection method.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Solving Linear Systems through Nested Dissection\",\"authors\":\"N. Alon, R. Yuster\",\"doi\":\"10.1109/FOCS.2010.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal method for solving a linear system Ax=b where A is a symmetric positive definite matrix. The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection method to apply to any non-singular well-separable matrix over any field. The running times we obtain essentially match those of the nested dissection method.\",\"PeriodicalId\":228365,\"journal\":{\"name\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2010.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

由Lipton, Rose和Tarjan开发的广义嵌套解剖方法是求解线性系统Ax=b的一种开创性方法,其中a是对称正定矩阵。当A是可分离矩阵时(例如底层支持是平面的或避免了固定次元的矩阵),该方法运行得非常快。本文将嵌套分解方法推广到适用于任意域上的任意非奇异可分矩阵。我们得到的运行时间与嵌套分解方法基本匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Linear Systems through Nested Dissection
The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal method for solving a linear system Ax=b where A is a symmetric positive definite matrix. The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection method to apply to any non-singular well-separable matrix over any field. The running times we obtain essentially match those of the nested dissection method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信