纳米真空通道晶体管(NVCT)几何结构的伴随优化

L. C. Adams, G. Werner, J. Cary
{"title":"纳米真空通道晶体管(NVCT)几何结构的伴随优化","authors":"L. C. Adams, G. Werner, J. Cary","doi":"10.1109/IVNC57695.2023.10188877","DOIUrl":null,"url":null,"abstract":"A new, efficient method for optimizing NVCT geometry is presented. Previous work has shown how adjoint techniques can compute the shape gradient (i.e., gradient with respect to shape perturbations) of a prescribed-emission electron gun using only two particle-in-cell simulations [5]. This work provides an extension to the case of self-consistent emission in Hamiltonian systems by including external parameters as dynamical variables. The structure of the perturbed Hamilton's equations then yields a simple recipe for the evaluation of the adjoint problem. The adjoint problem can be evaluated as a perturbed and time-reversed version of the original simulation. From this, the full gradient can be extracted. This general approach is used to incorporate the modified emission current into the computed shape gradients, enabling full-device gradient-based optimization.","PeriodicalId":346266,"journal":{"name":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjoint Optimization of Nanoscale Vacuum-Channel Transistor (NVCT) Geometry\",\"authors\":\"L. C. Adams, G. Werner, J. Cary\",\"doi\":\"10.1109/IVNC57695.2023.10188877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new, efficient method for optimizing NVCT geometry is presented. Previous work has shown how adjoint techniques can compute the shape gradient (i.e., gradient with respect to shape perturbations) of a prescribed-emission electron gun using only two particle-in-cell simulations [5]. This work provides an extension to the case of self-consistent emission in Hamiltonian systems by including external parameters as dynamical variables. The structure of the perturbed Hamilton's equations then yields a simple recipe for the evaluation of the adjoint problem. The adjoint problem can be evaluated as a perturbed and time-reversed version of the original simulation. From this, the full gradient can be extracted. This general approach is used to incorporate the modified emission current into the computed shape gradients, enabling full-device gradient-based optimization.\",\"PeriodicalId\":346266,\"journal\":{\"name\":\"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVNC57695.2023.10188877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC57695.2023.10188877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的、有效的NVCT几何优化方法。先前的工作已经表明,伴随技术如何仅使用两个细胞内粒子模拟就可以计算规定发射的电子枪的形状梯度(即相对于形状扰动的梯度)[5]。本工作通过将外部参数作为动力学变量,为哈密顿系统的自洽发射提供了一种扩展。扰动汉弥尔顿方程的结构然后产生一个简单的方法来评估伴随问题。伴随问题可以被评价为原始模拟的摄动和时间反转版本。由此,可以提取出完整的梯度。这种通用方法用于将修改后的发射电流合并到计算的形状梯度中,从而实现基于全器件梯度的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjoint Optimization of Nanoscale Vacuum-Channel Transistor (NVCT) Geometry
A new, efficient method for optimizing NVCT geometry is presented. Previous work has shown how adjoint techniques can compute the shape gradient (i.e., gradient with respect to shape perturbations) of a prescribed-emission electron gun using only two particle-in-cell simulations [5]. This work provides an extension to the case of self-consistent emission in Hamiltonian systems by including external parameters as dynamical variables. The structure of the perturbed Hamilton's equations then yields a simple recipe for the evaluation of the adjoint problem. The adjoint problem can be evaluated as a perturbed and time-reversed version of the original simulation. From this, the full gradient can be extracted. This general approach is used to incorporate the modified emission current into the computed shape gradients, enabling full-device gradient-based optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信