基于DGA参数的电力变压器状态评估预测技术

J. Haema, R. Phadungthin
{"title":"基于DGA参数的电力变压器状态评估预测技术","authors":"J. Haema, R. Phadungthin","doi":"10.1109/APPEEC.2013.6837171","DOIUrl":null,"url":null,"abstract":"This dissolved gas analysis is the most important tool for determining the condition of power transformer. It is the first indicator of a problem and can identify deterioration of the insulating such as overheating, hot spot, partial discharge and arcing. Therefore, this paper presents a prediction technique of power transformer condition assessment, by using DGA parameters in the analysis. The key gas parameters include hydrogen (H2), methane (CH4), acetylene (C2H2), ethane (C2H6), carbon monoxide (CO) and carbon dioxide (CO2). The historical test results of the dissolved gas analysis of power transformers rated 115/22 kV 50 MVA analyzed as an example. There are two procedures used in the condition assessment; one is total dissolved combustible gas while the other is key gas. Firstly, the total dissolved combustible gas is considered. Next, the key gas is utilized for specify the incipient faults. Finally, the known condition can be used to plan appropriate maintenance effectively in the utility. This results in higher system reliability and longer useful lifetime of the power transformer.","PeriodicalId":330524,"journal":{"name":"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A prediction technique of power transformer condition assessment via DGA parameters\",\"authors\":\"J. Haema, R. Phadungthin\",\"doi\":\"10.1109/APPEEC.2013.6837171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This dissolved gas analysis is the most important tool for determining the condition of power transformer. It is the first indicator of a problem and can identify deterioration of the insulating such as overheating, hot spot, partial discharge and arcing. Therefore, this paper presents a prediction technique of power transformer condition assessment, by using DGA parameters in the analysis. The key gas parameters include hydrogen (H2), methane (CH4), acetylene (C2H2), ethane (C2H6), carbon monoxide (CO) and carbon dioxide (CO2). The historical test results of the dissolved gas analysis of power transformers rated 115/22 kV 50 MVA analyzed as an example. There are two procedures used in the condition assessment; one is total dissolved combustible gas while the other is key gas. Firstly, the total dissolved combustible gas is considered. Next, the key gas is utilized for specify the incipient faults. Finally, the known condition can be used to plan appropriate maintenance effectively in the utility. This results in higher system reliability and longer useful lifetime of the power transformer.\",\"PeriodicalId\":330524,\"journal\":{\"name\":\"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2013.6837171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2013.6837171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

溶解气体分析是确定电力变压器状态的重要工具。这是一个问题的第一个指标,可以识别绝缘恶化,如过热,热点,局部放电和电弧。为此,本文提出了一种利用DGA参数进行分析的电力变压器状态评估预测技术。关键气体参数包括氢气(H2)、甲烷(CH4)、乙炔(C2H2)、乙烷(C2H6)、一氧化碳(CO)和二氧化碳(CO2)。以115/22 kV 50mva电力变压器溶解气体分析的历史试验结果为例进行了分析。在状态评估中使用了两个程序;一种是总溶解可燃气体,另一种是关键气体。首先,考虑总溶解可燃气体。其次,利用关键气体确定早期断层。最后,利用已知的条件,可以有效地计划适当的维护。从而提高了系统的可靠性,延长了电力变压器的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prediction technique of power transformer condition assessment via DGA parameters
This dissolved gas analysis is the most important tool for determining the condition of power transformer. It is the first indicator of a problem and can identify deterioration of the insulating such as overheating, hot spot, partial discharge and arcing. Therefore, this paper presents a prediction technique of power transformer condition assessment, by using DGA parameters in the analysis. The key gas parameters include hydrogen (H2), methane (CH4), acetylene (C2H2), ethane (C2H6), carbon monoxide (CO) and carbon dioxide (CO2). The historical test results of the dissolved gas analysis of power transformers rated 115/22 kV 50 MVA analyzed as an example. There are two procedures used in the condition assessment; one is total dissolved combustible gas while the other is key gas. Firstly, the total dissolved combustible gas is considered. Next, the key gas is utilized for specify the incipient faults. Finally, the known condition can be used to plan appropriate maintenance effectively in the utility. This results in higher system reliability and longer useful lifetime of the power transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信