{"title":"特征选择算法:综述与实验评价","authors":"L. Molina, L. B. Muñoz, À. Nebot","doi":"10.1109/ICDM.2002.1183917","DOIUrl":null,"url":null,"abstract":"In view of the substantial number of existing feature selection algorithms, the need arises to count on criteria that enables to adequately decide which algorithm to use in certain situations. This work assesses the performance of several fundamental algorithms found in the literature in a controlled scenario. A scoring measure ranks the algorithms by taking into account the amount of relevance, irrelevance and redundance on sample data sets. This measure computes the degree of matching between the output given by the algorithm and the known optimal solution. Sample size effects are also studied.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"692","resultStr":"{\"title\":\"Feature selection algorithms: a survey and experimental evaluation\",\"authors\":\"L. Molina, L. B. Muñoz, À. Nebot\",\"doi\":\"10.1109/ICDM.2002.1183917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the substantial number of existing feature selection algorithms, the need arises to count on criteria that enables to adequately decide which algorithm to use in certain situations. This work assesses the performance of several fundamental algorithms found in the literature in a controlled scenario. A scoring measure ranks the algorithms by taking into account the amount of relevance, irrelevance and redundance on sample data sets. This measure computes the degree of matching between the output given by the algorithm and the known optimal solution. Sample size effects are also studied.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"692\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1183917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature selection algorithms: a survey and experimental evaluation
In view of the substantial number of existing feature selection algorithms, the need arises to count on criteria that enables to adequately decide which algorithm to use in certain situations. This work assesses the performance of several fundamental algorithms found in the literature in a controlled scenario. A scoring measure ranks the algorithms by taking into account the amount of relevance, irrelevance and redundance on sample data sets. This measure computes the degree of matching between the output given by the algorithm and the known optimal solution. Sample size effects are also studied.