在线食品配方标题语义:结合营养事实和主题

T. Kusmierczyk, K. Nørvåg
{"title":"在线食品配方标题语义:结合营养事实和主题","authors":"T. Kusmierczyk, K. Nørvåg","doi":"10.1145/2983323.2983897","DOIUrl":null,"url":null,"abstract":"Dietary pattern analysis is an important research area, and recently the availability of rich resources in food-focused social networks has enabled new opportunities in that field. However, there is a little understanding of how online textual content is related to actual health factors, e.g., nutritional values. To contribute to this lack of knowledge, we present a novel approach to mine and model online food content by combining text topics with related nutrient facts. Our empirical analysis reveals a strong correlation between them and our experiments show the extent to which it is possible to predict nutrient facts from meal name.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Online Food Recipe Title Semantics: Combining Nutrient Facts and Topics\",\"authors\":\"T. Kusmierczyk, K. Nørvåg\",\"doi\":\"10.1145/2983323.2983897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dietary pattern analysis is an important research area, and recently the availability of rich resources in food-focused social networks has enabled new opportunities in that field. However, there is a little understanding of how online textual content is related to actual health factors, e.g., nutritional values. To contribute to this lack of knowledge, we present a novel approach to mine and model online food content by combining text topics with related nutrient facts. Our empirical analysis reveals a strong correlation between them and our experiments show the extent to which it is possible to predict nutrient facts from meal name.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

饮食模式分析是一个重要的研究领域,最近以食物为中心的社交网络提供了丰富的资源,为该领域提供了新的机会。然而,人们对在线文本内容与实际健康因素(如营养价值)之间的关系知之甚少。为了弥补这种知识的缺乏,我们提出了一种新的方法,通过将文本主题与相关的营养事实相结合,来挖掘和建模在线食品内容。我们的实证分析表明,它们之间存在很强的相关性,我们的实验表明,从膳食名称中预测营养成分是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Food Recipe Title Semantics: Combining Nutrient Facts and Topics
Dietary pattern analysis is an important research area, and recently the availability of rich resources in food-focused social networks has enabled new opportunities in that field. However, there is a little understanding of how online textual content is related to actual health factors, e.g., nutritional values. To contribute to this lack of knowledge, we present a novel approach to mine and model online food content by combining text topics with related nutrient facts. Our empirical analysis reveals a strong correlation between them and our experiments show the extent to which it is possible to predict nutrient facts from meal name.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信