{"title":"一种新的离群点检测算法及其在智能交通系统中的应用","authors":"Gao Lin, Liu Xin, Han Feng, Liu Ying","doi":"10.1109/ITAIC.2014.7065088","DOIUrl":null,"url":null,"abstract":"Outlier detection plays an important role for data analysis in data mining. Aiming at outlier characters of Intelligent Transportation System (ITS) such as few samples, high frequency and large range, a new outlier detection algorithm based on probability theory and fuzzy clustering method (FCM) is proposed. Firstly, the new algorithm judges data variation, and then clusters data using FCM. Finally, the outlier detection result is given through estimating clustering result using probability theory. Detection of practical travel time verifies validity and practicability of the new algorithm.","PeriodicalId":111584,"journal":{"name":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new outlier detection algorithm and its application in intelligent transportation system\",\"authors\":\"Gao Lin, Liu Xin, Han Feng, Liu Ying\",\"doi\":\"10.1109/ITAIC.2014.7065088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection plays an important role for data analysis in data mining. Aiming at outlier characters of Intelligent Transportation System (ITS) such as few samples, high frequency and large range, a new outlier detection algorithm based on probability theory and fuzzy clustering method (FCM) is proposed. Firstly, the new algorithm judges data variation, and then clusters data using FCM. Finally, the outlier detection result is given through estimating clustering result using probability theory. Detection of practical travel time verifies validity and practicability of the new algorithm.\",\"PeriodicalId\":111584,\"journal\":{\"name\":\"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITAIC.2014.7065088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAIC.2014.7065088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new outlier detection algorithm and its application in intelligent transportation system
Outlier detection plays an important role for data analysis in data mining. Aiming at outlier characters of Intelligent Transportation System (ITS) such as few samples, high frequency and large range, a new outlier detection algorithm based on probability theory and fuzzy clustering method (FCM) is proposed. Firstly, the new algorithm judges data variation, and then clusters data using FCM. Finally, the outlier detection result is given through estimating clustering result using probability theory. Detection of practical travel time verifies validity and practicability of the new algorithm.