碱度控制沸石成核与生长:全形态沸石L介晶的超快合成及吸附评价

{"title":"碱度控制沸石成核与生长:全形态沸石L介晶的超快合成及吸附评价","authors":"","doi":"10.20517/cs.2022.25","DOIUrl":null,"url":null,"abstract":"Owing to the intrinsic complexity of crystallization and the heterogeneity of precursors, the specific stages and corresponding behaviors of an actual crystallization system remain ambiguous, which makes the univariate-controlled crystallization-kinetics-regulated synthesis and design of zeolite morphology and porosity an unrealized blueprint. In this study, a facile and univariate modulation (i.e., OH-/SiO2) strategy was developed to regulate zeolite crystallization kinetics, and zeolite L mesocrystals were synthesized rapidly (within 1-2 h) with almost all LTL morphologies (from cylindrical or disc-like shapes to nanoclusters or nanocrystals) in the simplest SiO2-Al2O3-K2O-H2O system. Using time-resolved analysis of the change in the solid-liquid Si/Al nutrient and crystallinity evolution, the intertwined and complex crystallization processes of zeolite L were clearly distinguished into four distinct stages: induction, nucleation, growth, and ripening. Under alkalinity-controlled conditions, the reactivity, Si/Al distribution, and state of aluminosilicates were critical to the formation of short-range order in the amorphous matrix, which greatly influenced the nucleation frequency and assembly state. Subsequently, these nucleation differences evoked correspondingly different kinetic growth behaviors. A putative alkalinity-controlled nonclassical crystallization mechanism was uncovered, and its validity was evaluated by analyzing morphology evolution, NH4F etching, and the effects of modifiers. Furthermore, adsorption tests demonstrated the high adsorption capacity of a series of zeolite L for guest molecules with various sizes and properties (e.g., gaseous aromatic hydrocarbon, aqueous dye, and protein).","PeriodicalId":381136,"journal":{"name":"Chemical Synthesis","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkalinity-controlled zeolite nucleation and growth: ultrafast synthesis of total-morphology zeolite L mesocrystals and adsorption evaluation\",\"authors\":\"\",\"doi\":\"10.20517/cs.2022.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the intrinsic complexity of crystallization and the heterogeneity of precursors, the specific stages and corresponding behaviors of an actual crystallization system remain ambiguous, which makes the univariate-controlled crystallization-kinetics-regulated synthesis and design of zeolite morphology and porosity an unrealized blueprint. In this study, a facile and univariate modulation (i.e., OH-/SiO2) strategy was developed to regulate zeolite crystallization kinetics, and zeolite L mesocrystals were synthesized rapidly (within 1-2 h) with almost all LTL morphologies (from cylindrical or disc-like shapes to nanoclusters or nanocrystals) in the simplest SiO2-Al2O3-K2O-H2O system. Using time-resolved analysis of the change in the solid-liquid Si/Al nutrient and crystallinity evolution, the intertwined and complex crystallization processes of zeolite L were clearly distinguished into four distinct stages: induction, nucleation, growth, and ripening. Under alkalinity-controlled conditions, the reactivity, Si/Al distribution, and state of aluminosilicates were critical to the formation of short-range order in the amorphous matrix, which greatly influenced the nucleation frequency and assembly state. Subsequently, these nucleation differences evoked correspondingly different kinetic growth behaviors. A putative alkalinity-controlled nonclassical crystallization mechanism was uncovered, and its validity was evaluated by analyzing morphology evolution, NH4F etching, and the effects of modifiers. Furthermore, adsorption tests demonstrated the high adsorption capacity of a series of zeolite L for guest molecules with various sizes and properties (e.g., gaseous aromatic hydrocarbon, aqueous dye, and protein).\",\"PeriodicalId\":381136,\"journal\":{\"name\":\"Chemical Synthesis\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/cs.2022.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/cs.2022.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于结晶本身的复杂性和前驱体的非均质性,实际结晶体系的具体阶段和相应的行为仍然不明确,这使得单变量控制结晶-动力学调节的沸石形貌和孔隙度的合成和设计成为一个无法实现的蓝图。在本研究中,开发了一种简单的单变量调制(即OH-/SiO2)策略来调节沸石结晶动力学,并在最简单的SiO2- al2o3 - k20 - h2o体系中快速合成了具有几乎所有LTL形态(从圆柱形或圆盘状到纳米团簇或纳米晶体)的沸石L介晶(1-2小时)。通过时间分辨分析固液Si/Al营养物的变化和结晶度的演变,将L沸石的结晶过程清晰地划分为诱导、成核、生长和成熟四个不同的阶段。在碱度控制条件下,硅铝酸盐的反应活性、Si/Al分布和状态对非晶基体中短程有序的形成至关重要,这对成核频率和组装状态有很大影响。随后,这些成核差异引起相应的不同的动力学生长行为。揭示了一种碱度控制的非经典结晶机理,并通过形貌演变、NH4F腐蚀和改性剂的影响对其有效性进行了评价。此外,吸附试验表明,一系列L型沸石对各种大小和性质的客体分子(如气态芳烃、水性染料和蛋白质)具有很高的吸附能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alkalinity-controlled zeolite nucleation and growth: ultrafast synthesis of total-morphology zeolite L mesocrystals and adsorption evaluation
Owing to the intrinsic complexity of crystallization and the heterogeneity of precursors, the specific stages and corresponding behaviors of an actual crystallization system remain ambiguous, which makes the univariate-controlled crystallization-kinetics-regulated synthesis and design of zeolite morphology and porosity an unrealized blueprint. In this study, a facile and univariate modulation (i.e., OH-/SiO2) strategy was developed to regulate zeolite crystallization kinetics, and zeolite L mesocrystals were synthesized rapidly (within 1-2 h) with almost all LTL morphologies (from cylindrical or disc-like shapes to nanoclusters or nanocrystals) in the simplest SiO2-Al2O3-K2O-H2O system. Using time-resolved analysis of the change in the solid-liquid Si/Al nutrient and crystallinity evolution, the intertwined and complex crystallization processes of zeolite L were clearly distinguished into four distinct stages: induction, nucleation, growth, and ripening. Under alkalinity-controlled conditions, the reactivity, Si/Al distribution, and state of aluminosilicates were critical to the formation of short-range order in the amorphous matrix, which greatly influenced the nucleation frequency and assembly state. Subsequently, these nucleation differences evoked correspondingly different kinetic growth behaviors. A putative alkalinity-controlled nonclassical crystallization mechanism was uncovered, and its validity was evaluated by analyzing morphology evolution, NH4F etching, and the effects of modifiers. Furthermore, adsorption tests demonstrated the high adsorption capacity of a series of zeolite L for guest molecules with various sizes and properties (e.g., gaseous aromatic hydrocarbon, aqueous dye, and protein).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信