Gabor核是虹膜识别的最佳选择吗?

Aidan Boyd, A. Czajka, K. Bowyer
{"title":"Gabor核是虹膜识别的最佳选择吗?","authors":"Aidan Boyd, A. Czajka, K. Bowyer","doi":"10.1109/IJCB48548.2020.9304939","DOIUrl":null,"url":null,"abstract":"Gabor kernels are widely accepted as dominant filters for iris recognition. In this work we investigate, given the current interest in neural networks, if Gabor kernels are the only family of functions performing best in iris recognition, or if better filters can be learned directly from iris data. We use (on purpose) a single-layer convolutional neural network as it mimics an iris code-based algorithm. We learn two sets of data-driven kernels; one starting from randomly initialized weights and the other from open-source set of Gabor kernels. Through experimentation, we show that the network does not converge on Gabor kernels, instead converging on a mix of edge detectors, blob detectors and simple waves. In our experiments carried out with three subject-disjoint datasets we found that the performance of these learned kernels is comparable to the open-source Gabor kernels. These lead us to two conclusions: (a) a family of functions offering optimal performance in iris recognition is wider than Gabor kernels, and (b) we probably hit the maximum performance for an iris coding algorithm that uses a single convolutional layer, yet with multiple filters. Released with this work is a framework to learn data-driven kernels that can be easily transplanted into open-source iris recognition software (for instance, OSIRIS - Open Source IRIS).","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Are Gabor Kernels Optimal for Iris Recognition?\",\"authors\":\"Aidan Boyd, A. Czajka, K. Bowyer\",\"doi\":\"10.1109/IJCB48548.2020.9304939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gabor kernels are widely accepted as dominant filters for iris recognition. In this work we investigate, given the current interest in neural networks, if Gabor kernels are the only family of functions performing best in iris recognition, or if better filters can be learned directly from iris data. We use (on purpose) a single-layer convolutional neural network as it mimics an iris code-based algorithm. We learn two sets of data-driven kernels; one starting from randomly initialized weights and the other from open-source set of Gabor kernels. Through experimentation, we show that the network does not converge on Gabor kernels, instead converging on a mix of edge detectors, blob detectors and simple waves. In our experiments carried out with three subject-disjoint datasets we found that the performance of these learned kernels is comparable to the open-source Gabor kernels. These lead us to two conclusions: (a) a family of functions offering optimal performance in iris recognition is wider than Gabor kernels, and (b) we probably hit the maximum performance for an iris coding algorithm that uses a single convolutional layer, yet with multiple filters. Released with this work is a framework to learn data-driven kernels that can be easily transplanted into open-source iris recognition software (for instance, OSIRIS - Open Source IRIS).\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Gabor核被广泛认为是虹膜识别的主要滤波器。在这项工作中,考虑到当前对神经网络的兴趣,我们研究了Gabor核是否是唯一在虹膜识别中表现最好的函数族,或者是否可以直接从虹膜数据中学习到更好的过滤器。我们(故意)使用单层卷积神经网络,因为它模仿了基于虹膜代码的算法。我们学习了两组数据驱动的内核;一个是从随机初始化的权重开始,另一个是从开源的Gabor内核集开始。通过实验,我们表明该网络不收敛于Gabor核,而是收敛于边缘检测器、blob检测器和简单波的混合。在我们用三个主题不相交的数据集进行的实验中,我们发现这些学习到的核的性能与开源的Gabor核相当。这使我们得出了两个结论:(a)在虹膜识别中提供最佳性能的函数族比Gabor核更宽,(b)我们可能达到了使用单个卷积层但具有多个过滤器的虹膜编码算法的最大性能。与这项工作一起发布的是一个学习数据驱动内核的框架,可以很容易地移植到开源的虹膜识别软件中(例如,OSIRIS -开源虹膜)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are Gabor Kernels Optimal for Iris Recognition?
Gabor kernels are widely accepted as dominant filters for iris recognition. In this work we investigate, given the current interest in neural networks, if Gabor kernels are the only family of functions performing best in iris recognition, or if better filters can be learned directly from iris data. We use (on purpose) a single-layer convolutional neural network as it mimics an iris code-based algorithm. We learn two sets of data-driven kernels; one starting from randomly initialized weights and the other from open-source set of Gabor kernels. Through experimentation, we show that the network does not converge on Gabor kernels, instead converging on a mix of edge detectors, blob detectors and simple waves. In our experiments carried out with three subject-disjoint datasets we found that the performance of these learned kernels is comparable to the open-source Gabor kernels. These lead us to two conclusions: (a) a family of functions offering optimal performance in iris recognition is wider than Gabor kernels, and (b) we probably hit the maximum performance for an iris coding algorithm that uses a single convolutional layer, yet with multiple filters. Released with this work is a framework to learn data-driven kernels that can be easily transplanted into open-source iris recognition software (for instance, OSIRIS - Open Source IRIS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信