基于MEC的延迟约束动态计算卸载联合资源分配

M. Merluzzi, P. Lorenzo, S. Barbarossa, V. Frascolla
{"title":"基于MEC的延迟约束动态计算卸载联合资源分配","authors":"M. Merluzzi, P. Lorenzo, S. Barbarossa, V. Frascolla","doi":"10.1109/WCNCW.2019.8902904","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of dynamic computation offloading with Multi-Access Edge Computing (MEC), where new requests for computations are continuously generated at each user equipment (UE), and are handled through dynamic queue systems. Building on stochastic optimization tools, we provide a dynamic algorithm that jointly optimize radio (i.e., power, bandwidth) and computation (i.e., CPU cycles) resources, while guaranteeing a target performance in terms of average latency and out of service probability, i.e., the probability that the (sum of) computation queues exceeds a predefined value. The method requires the solution of a convex optimization problem at each time slot, and does not need any apriori knowledge of channel and task arrival distributions. Finally, numerical results corroborate the potential benefits of our strategy.","PeriodicalId":121352,"journal":{"name":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Joint Resource Allocation for Latency-Constrained Dynamic Computation Offloading with MEC\",\"authors\":\"M. Merluzzi, P. Lorenzo, S. Barbarossa, V. Frascolla\",\"doi\":\"10.1109/WCNCW.2019.8902904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of dynamic computation offloading with Multi-Access Edge Computing (MEC), where new requests for computations are continuously generated at each user equipment (UE), and are handled through dynamic queue systems. Building on stochastic optimization tools, we provide a dynamic algorithm that jointly optimize radio (i.e., power, bandwidth) and computation (i.e., CPU cycles) resources, while guaranteeing a target performance in terms of average latency and out of service probability, i.e., the probability that the (sum of) computation queues exceeds a predefined value. The method requires the solution of a convex optimization problem at each time slot, and does not need any apriori knowledge of channel and task arrival distributions. Finally, numerical results corroborate the potential benefits of our strategy.\",\"PeriodicalId\":121352,\"journal\":{\"name\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2019.8902904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2019.8902904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们解决了多访问边缘计算(MEC)的动态计算卸载问题,其中在每个用户设备(UE)上连续生成新的计算请求,并通过动态队列系统进行处理。在随机优化工具的基础上,我们提供了一种动态算法,该算法可以联合优化无线电(即功率、带宽)和计算(即CPU周期)资源,同时在平均延迟和服务中断概率(即计算队列(总和)超过预定义值的概率)方面保证目标性能。该方法要求在每个时隙求解一个凸优化问题,并且不需要任何先验的信道和任务到达分布知识。最后,数值结果证实了我们的策略的潜在效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Resource Allocation for Latency-Constrained Dynamic Computation Offloading with MEC
In this paper, we address the problem of dynamic computation offloading with Multi-Access Edge Computing (MEC), where new requests for computations are continuously generated at each user equipment (UE), and are handled through dynamic queue systems. Building on stochastic optimization tools, we provide a dynamic algorithm that jointly optimize radio (i.e., power, bandwidth) and computation (i.e., CPU cycles) resources, while guaranteeing a target performance in terms of average latency and out of service probability, i.e., the probability that the (sum of) computation queues exceeds a predefined value. The method requires the solution of a convex optimization problem at each time slot, and does not need any apriori knowledge of channel and task arrival distributions. Finally, numerical results corroborate the potential benefits of our strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信