基于NL2SQL框架的高价值支付系统数据查询

Mian Du, Yuwei Zeng, Xun Zhu, Lanlan Zhang
{"title":"基于NL2SQL框架的高价值支付系统数据查询","authors":"Mian Du, Yuwei Zeng, Xun Zhu, Lanlan Zhang","doi":"10.1109/ISPDS56360.2022.9874167","DOIUrl":null,"url":null,"abstract":"When applying the popular deep learning based NL2SQL models directly in a specific scenario, problems arise due to the characteristics rooted in background knowledge. In our case, the terminologies and abbreviations in the high value payment system database are the main obstacles. In this paper, a framework that is compatible with BERT-CN and RAT-SQL is proposed for data inquiry tasks within the high value payment system, in which both BERT and RAT-SQL are state of the art models achieved great performance in many tasks. Besides that, NER and data preprocessing toolkits are introduced to align the terminologies and abbreviations with the columns and tables. Both the training and testing stages show acceptable results and the reasons are well discussed. This framework has great potential to be extended to other application scenarios with minimal modifications.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Value Payment System Data Inquiry Using a NL2SQL Framework\",\"authors\":\"Mian Du, Yuwei Zeng, Xun Zhu, Lanlan Zhang\",\"doi\":\"10.1109/ISPDS56360.2022.9874167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When applying the popular deep learning based NL2SQL models directly in a specific scenario, problems arise due to the characteristics rooted in background knowledge. In our case, the terminologies and abbreviations in the high value payment system database are the main obstacles. In this paper, a framework that is compatible with BERT-CN and RAT-SQL is proposed for data inquiry tasks within the high value payment system, in which both BERT and RAT-SQL are state of the art models achieved great performance in many tasks. Besides that, NER and data preprocessing toolkits are introduced to align the terminologies and abbreviations with the columns and tables. Both the training and testing stages show acceptable results and the reasons are well discussed. This framework has great potential to be extended to other application scenarios with minimal modifications.\",\"PeriodicalId\":280244,\"journal\":{\"name\":\"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDS56360.2022.9874167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当将流行的基于深度学习的NL2SQL模型直接应用于特定场景时,由于根植于背景知识的特征而产生问题。在我们的案例中,高价值支付系统数据库中的术语和缩写是主要障碍。本文针对高价值支付系统中的数据查询任务,提出了一个BERT- cn和RAT-SQL兼容的框架,其中BERT和RAT-SQL都是最先进的模型,在许多任务中都取得了很好的性能。此外,还引入了NER和数据预处理工具包,以使术语和缩写与列和表保持一致。训练和测试阶段都显示出可接受的结果,并对原因进行了很好的讨论。这个框架有很大的潜力,可以通过最小的修改扩展到其他应用程序场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Value Payment System Data Inquiry Using a NL2SQL Framework
When applying the popular deep learning based NL2SQL models directly in a specific scenario, problems arise due to the characteristics rooted in background knowledge. In our case, the terminologies and abbreviations in the high value payment system database are the main obstacles. In this paper, a framework that is compatible with BERT-CN and RAT-SQL is proposed for data inquiry tasks within the high value payment system, in which both BERT and RAT-SQL are state of the art models achieved great performance in many tasks. Besides that, NER and data preprocessing toolkits are introduced to align the terminologies and abbreviations with the columns and tables. Both the training and testing stages show acceptable results and the reasons are well discussed. This framework has great potential to be extended to other application scenarios with minimal modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信