{"title":"十六上下文动态光可重构门阵列","authors":"M. Nakajima, Minoru Watanabe","doi":"10.1109/AHS.2009.64","DOIUrl":null,"url":null,"abstract":"Demand for fast dynamic reconfiguration has increased since dynamic reconfiguration can accelerate the performance of implementation circuits on a programmable device. Such dynamic reconfiguration necessitates two important features: fast reconfiguration and numerous contexts. However, because fast reconfiguration and numerous contexts share a tradeoff relation on current VLSIs, optically reconfigurable gate arrays (ORGAs) have been developed to resolve this dilemma.ORGAs can realize a large virtual gate count that is much larger than those of current VLSI chips by exploiting the large storage capacity of a holographic memory. Furthermore, ORGAs can realize fast reconfiguration through use of large bandwidth optical connections between a holographic memory and a programmable gate array VLSI. Among such developments, we have been developing dynamic optically reconfigurable gate arrays (DORGAs)that realize a high gate density VLSI using a photodiode memory architecture. This paper presents the first demonstration of a 16-context DORGA architecture. Furthermore, we present experimental results: 530–833 ns reconfiguration times and 5-9.375 us retention times.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Sixteen-Context Dynamic Optically Reconfigurable Gate Array\",\"authors\":\"M. Nakajima, Minoru Watanabe\",\"doi\":\"10.1109/AHS.2009.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand for fast dynamic reconfiguration has increased since dynamic reconfiguration can accelerate the performance of implementation circuits on a programmable device. Such dynamic reconfiguration necessitates two important features: fast reconfiguration and numerous contexts. However, because fast reconfiguration and numerous contexts share a tradeoff relation on current VLSIs, optically reconfigurable gate arrays (ORGAs) have been developed to resolve this dilemma.ORGAs can realize a large virtual gate count that is much larger than those of current VLSI chips by exploiting the large storage capacity of a holographic memory. Furthermore, ORGAs can realize fast reconfiguration through use of large bandwidth optical connections between a holographic memory and a programmable gate array VLSI. Among such developments, we have been developing dynamic optically reconfigurable gate arrays (DORGAs)that realize a high gate density VLSI using a photodiode memory architecture. This paper presents the first demonstration of a 16-context DORGA architecture. Furthermore, we present experimental results: 530–833 ns reconfiguration times and 5-9.375 us retention times.\",\"PeriodicalId\":318989,\"journal\":{\"name\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2009.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sixteen-Context Dynamic Optically Reconfigurable Gate Array
Demand for fast dynamic reconfiguration has increased since dynamic reconfiguration can accelerate the performance of implementation circuits on a programmable device. Such dynamic reconfiguration necessitates two important features: fast reconfiguration and numerous contexts. However, because fast reconfiguration and numerous contexts share a tradeoff relation on current VLSIs, optically reconfigurable gate arrays (ORGAs) have been developed to resolve this dilemma.ORGAs can realize a large virtual gate count that is much larger than those of current VLSI chips by exploiting the large storage capacity of a holographic memory. Furthermore, ORGAs can realize fast reconfiguration through use of large bandwidth optical connections between a holographic memory and a programmable gate array VLSI. Among such developments, we have been developing dynamic optically reconfigurable gate arrays (DORGAs)that realize a high gate density VLSI using a photodiode memory architecture. This paper presents the first demonstration of a 16-context DORGA architecture. Furthermore, we present experimental results: 530–833 ns reconfiguration times and 5-9.375 us retention times.