可变稀疏度系统辨识中两个自适应滤波器的仿射组合

P. Rakesh, T. Kumar
{"title":"可变稀疏度系统辨识中两个自适应滤波器的仿射组合","authors":"P. Rakesh, T. Kumar","doi":"10.1109/ICACCI.2016.7732060","DOIUrl":null,"url":null,"abstract":"Low complexity Normalized Least Mean Square (NLMS) adaptive algorithm is widely used in the adaptive system identification applications. To exploit the sparse impulse response of the system, different sparse penalties are introduced into the error function of the NLMS algorithm. Reweighted Zero Attracting-NLMS (RZA-NLMS) algorithm based on l1-norm relaxation offers improved performance in identifying the system with sparse echo path but when the system is non-sparse, NLMS algorithm dominates the sparse adaptive algorithm. In order to identify the system with varying sparseness, a new strategy is required. In this paper, we propose an affine combination of RZA-NLMS and NLMS filters used for system identification with variable sparsity. The robust performance of our proposed approach has been verified from the MATLAB simulations.","PeriodicalId":371328,"journal":{"name":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An affine combination of two adaptive filters for system identification with variable sparsity\",\"authors\":\"P. Rakesh, T. Kumar\",\"doi\":\"10.1109/ICACCI.2016.7732060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low complexity Normalized Least Mean Square (NLMS) adaptive algorithm is widely used in the adaptive system identification applications. To exploit the sparse impulse response of the system, different sparse penalties are introduced into the error function of the NLMS algorithm. Reweighted Zero Attracting-NLMS (RZA-NLMS) algorithm based on l1-norm relaxation offers improved performance in identifying the system with sparse echo path but when the system is non-sparse, NLMS algorithm dominates the sparse adaptive algorithm. In order to identify the system with varying sparseness, a new strategy is required. In this paper, we propose an affine combination of RZA-NLMS and NLMS filters used for system identification with variable sparsity. The robust performance of our proposed approach has been verified from the MATLAB simulations.\",\"PeriodicalId\":371328,\"journal\":{\"name\":\"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCI.2016.7732060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2016.7732060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

低复杂度归一化最小均方(NLMS)自适应算法广泛应用于自适应系统辨识。为了充分利用系统的稀疏脉冲响应,在NLMS算法的误差函数中引入了不同的稀疏惩罚。基于l1范数松弛的重加权零吸引-NLMS (RZA-NLMS)算法在识别具有稀疏回波路径的系统时性能有所提高,但在系统非稀疏情况下,NLMS算法优于稀疏自适应算法。为了识别具有不同稀疏度的系统,需要一种新的策略。在本文中,我们提出了一种RZA-NLMS和NLMS滤波器的仿射组合,用于变稀疏系统辨识。通过MATLAB仿真验证了该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An affine combination of two adaptive filters for system identification with variable sparsity
Low complexity Normalized Least Mean Square (NLMS) adaptive algorithm is widely used in the adaptive system identification applications. To exploit the sparse impulse response of the system, different sparse penalties are introduced into the error function of the NLMS algorithm. Reweighted Zero Attracting-NLMS (RZA-NLMS) algorithm based on l1-norm relaxation offers improved performance in identifying the system with sparse echo path but when the system is non-sparse, NLMS algorithm dominates the sparse adaptive algorithm. In order to identify the system with varying sparseness, a new strategy is required. In this paper, we propose an affine combination of RZA-NLMS and NLMS filters used for system identification with variable sparsity. The robust performance of our proposed approach has been verified from the MATLAB simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信