secure:用于快速开发安全生物信息学管道的高性能框架

Haris Smajlovic, Ariya Shajii, Bonnie Berger, Hyunghoon Cho, Ibrahim Numanagić
{"title":"secure:用于快速开发安全生物信息学管道的高性能框架","authors":"Haris Smajlovic, Ariya Shajii, Bonnie Berger, Hyunghoon Cho, Ibrahim Numanagić","doi":"10.1109/IPDPSW55747.2022.00040","DOIUrl":null,"url":null,"abstract":"Genomic data leaks are irreversible. Leaked DNA cannot be changed, stays disclosed indefinitely, and affects the owner's family members as well. The recent large-scale genomic data collections [1], [2] render the traditional privacy protection mechanisms, like the Health Insurance Portability and Accountability Act (HIPAA), inadequate for protection against the novel security attacks [3]. On the other hand, data access restrictions hinder important clinical research that requires large datasets to operate [4]. These concerns can be naturally addressed by the employment of privacy-enhancing technologies, such as a secure multiparty computation (MPC) [5]–[10]. Secure MPC enables computation on data without disclosing the data itself by dividing the data and computation between multiple computing parties in a distributed manner to prevent individual computing parties from accessing raw data. MPC systems are being increasingly adopted in fields that operate on sensitive datasets [11]–[13], such as computational genomics and biomedical research [14]–[22].","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequre: a high-performance framework for rapid development of secure bioinformatics pipelines\",\"authors\":\"Haris Smajlovic, Ariya Shajii, Bonnie Berger, Hyunghoon Cho, Ibrahim Numanagić\",\"doi\":\"10.1109/IPDPSW55747.2022.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genomic data leaks are irreversible. Leaked DNA cannot be changed, stays disclosed indefinitely, and affects the owner's family members as well. The recent large-scale genomic data collections [1], [2] render the traditional privacy protection mechanisms, like the Health Insurance Portability and Accountability Act (HIPAA), inadequate for protection against the novel security attacks [3]. On the other hand, data access restrictions hinder important clinical research that requires large datasets to operate [4]. These concerns can be naturally addressed by the employment of privacy-enhancing technologies, such as a secure multiparty computation (MPC) [5]–[10]. Secure MPC enables computation on data without disclosing the data itself by dividing the data and computation between multiple computing parties in a distributed manner to prevent individual computing parties from accessing raw data. MPC systems are being increasingly adopted in fields that operate on sensitive datasets [11]–[13], such as computational genomics and biomedical research [14]–[22].\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因组数据泄露是不可逆转的。泄露的DNA是无法改变的,会无限期地公开,而且也会影响到所有者的家庭成员。最近大规模的基因组数据收集[1],[2]使得传统的隐私保护机制,如健康保险流通与责任法案(HIPAA),不足以抵御新的安全攻击[3]。另一方面,数据访问限制阻碍了需要大数据集运行的重要临床研究[4]。这些问题自然可以通过使用隐私增强技术来解决,例如安全多方计算(MPC)[5] -[10]。安全MPC通过在多个计算方之间以分布式方式划分数据和计算,以防止单个计算方访问原始数据,从而在不泄露数据本身的情况下实现对数据的计算。MPC系统越来越多地应用于操作敏感数据集的领域[11]-[13],例如计算基因组学和生物医学研究[14]-[22]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequre: a high-performance framework for rapid development of secure bioinformatics pipelines
Genomic data leaks are irreversible. Leaked DNA cannot be changed, stays disclosed indefinitely, and affects the owner's family members as well. The recent large-scale genomic data collections [1], [2] render the traditional privacy protection mechanisms, like the Health Insurance Portability and Accountability Act (HIPAA), inadequate for protection against the novel security attacks [3]. On the other hand, data access restrictions hinder important clinical research that requires large datasets to operate [4]. These concerns can be naturally addressed by the employment of privacy-enhancing technologies, such as a secure multiparty computation (MPC) [5]–[10]. Secure MPC enables computation on data without disclosing the data itself by dividing the data and computation between multiple computing parties in a distributed manner to prevent individual computing parties from accessing raw data. MPC systems are being increasingly adopted in fields that operate on sensitive datasets [11]–[13], such as computational genomics and biomedical research [14]–[22].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信