大型IGCC电厂燃气轮机性能分析

Y. Joo, Mi-Yeong Kim, Seik Park, D. Seo
{"title":"大型IGCC电厂燃气轮机性能分析","authors":"Y. Joo, Mi-Yeong Kim, Seik Park, D. Seo","doi":"10.18770/KEPCO.2016.02.03.415","DOIUrl":null,"url":null,"abstract":"As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.","PeriodicalId":445819,"journal":{"name":"KEPCO Journal on electric power and energy","volume":"85 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant\",\"authors\":\"Y. Joo, Mi-Yeong Kim, Seik Park, D. Seo\",\"doi\":\"10.18770/KEPCO.2016.02.03.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.\",\"PeriodicalId\":445819,\"journal\":{\"name\":\"KEPCO Journal on electric power and energy\",\"volume\":\"85 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KEPCO Journal on electric power and energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18770/KEPCO.2016.02.03.415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KEPCO Journal on electric power and energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18770/KEPCO.2016.02.03.415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着对洁净煤技术需求的增长,全球对综合气化联合循环(IGCC)电厂的研发力度也在加大。IGCC工厂将燃气轮机与气化块耦合在一起。在设计这一系统时,存在着各种技术和经济问题。其中一个问题是难以实现规模经济,因为商业IGCC合成燃气轮机装置的单列流能力有限;容量不超过净额定功率300mw。为了解决这个问题,本研究对一个合成燃气轮机进行了建模和模拟,目的是评估一个500兆瓦或更大的IGCC电厂的可行性。首先,选择一种输出和效率最好的燃气轮机与天然气一起使用。利用仿真工具GateCycle对水轮机进行了建模,并通过与设计值的比较验证了模型的完整性。然后,以某合成气燃气轮机的设计模型为基础,对其进行非设计建模,并与燃气轮机制造商的研究结果进行对比。模拟证实,通过将设计用于使用天然气的燃气轮机改造为适合使用合成气的燃气轮机,可以创建一个大容量的IGCC工厂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant
As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信