Shanshan Sun, Deqiang Zhou, N. Yusa, Haicheng Song
{"title":"涡流法评价碳钢管壁局部减薄","authors":"Shanshan Sun, Deqiang Zhou, N. Yusa, Haicheng Song","doi":"10.3233/saem200005","DOIUrl":null,"url":null,"abstract":"This paper proposes to evaluate the local wall thinning of carbon steel pipe using an eddy current method. Firstly, the feature signals are determined by correlation analysis of the signals and the wall thinning sizes. Subsequently, the models for estimating the residual wall thickness rt is constructed using Gaussian process regression (GPR). Finally, the applicability of the models to the evaluation of local wall thinning is verified by simulation and experiment.","PeriodicalId":296740,"journal":{"name":"Studies in Applied Electromagnetics and Mechanics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Eddy Current Method to Evaluate Local Wall Thinning of Carbon Steel Pipe\",\"authors\":\"Shanshan Sun, Deqiang Zhou, N. Yusa, Haicheng Song\",\"doi\":\"10.3233/saem200005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to evaluate the local wall thinning of carbon steel pipe using an eddy current method. Firstly, the feature signals are determined by correlation analysis of the signals and the wall thinning sizes. Subsequently, the models for estimating the residual wall thickness rt is constructed using Gaussian process regression (GPR). Finally, the applicability of the models to the evaluation of local wall thinning is verified by simulation and experiment.\",\"PeriodicalId\":296740,\"journal\":{\"name\":\"Studies in Applied Electromagnetics and Mechanics\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/saem200005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Electromagnetics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/saem200005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Eddy Current Method to Evaluate Local Wall Thinning of Carbon Steel Pipe
This paper proposes to evaluate the local wall thinning of carbon steel pipe using an eddy current method. Firstly, the feature signals are determined by correlation analysis of the signals and the wall thinning sizes. Subsequently, the models for estimating the residual wall thickness rt is constructed using Gaussian process regression (GPR). Finally, the applicability of the models to the evaluation of local wall thinning is verified by simulation and experiment.