{"title":"识别系统的系统中相互冲突的需求","authors":"Thiago Viana, A. Zisman, A. Bandara","doi":"10.1109/RE.2017.48","DOIUrl":null,"url":null,"abstract":"A System of Systems (SoS) is an arrangement of useful and independent sub-systems, which are integrated into a larger system. Examples are found in transport systems, nutritional systems, smart homes and smart cities. The composition of component sub-systems into an SoS enables support for complex functionalities that cannot be provided by individual sub-systems on their own. However, to realize the benefits of these functionalities it is necessary to address several software engineering chal-lenges including, but not limited to, the specification, design, construction, deployment, and management of an SoS. The various component sub-systems in an SoS environment are often concerned with distinct domains; are developed by different stake-holders under different circumstances and time; provide distinct functionalities; and are used by different stakeholders, which allow for the existence of conflicting requirements. In this paper, we present a framework to support management of emerging conflicting requirements in an SoS. In particular, we describe an approach to support identification of conflicts between resource-based requirements (i.e. requirements concerned with the con-sumption of different resources). In order to illustrate and evaluate the work, we use an example of a pilot study of an IoT SoS ecosystem designed to support food security at different levels of granularity, namely individuals, groups, cities, and nations.","PeriodicalId":176958,"journal":{"name":"2017 IEEE 25th International Requirements Engineering Conference (RE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Identifying Conflicting Requirements in Systems of Systems\",\"authors\":\"Thiago Viana, A. Zisman, A. Bandara\",\"doi\":\"10.1109/RE.2017.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A System of Systems (SoS) is an arrangement of useful and independent sub-systems, which are integrated into a larger system. Examples are found in transport systems, nutritional systems, smart homes and smart cities. The composition of component sub-systems into an SoS enables support for complex functionalities that cannot be provided by individual sub-systems on their own. However, to realize the benefits of these functionalities it is necessary to address several software engineering chal-lenges including, but not limited to, the specification, design, construction, deployment, and management of an SoS. The various component sub-systems in an SoS environment are often concerned with distinct domains; are developed by different stake-holders under different circumstances and time; provide distinct functionalities; and are used by different stakeholders, which allow for the existence of conflicting requirements. In this paper, we present a framework to support management of emerging conflicting requirements in an SoS. In particular, we describe an approach to support identification of conflicts between resource-based requirements (i.e. requirements concerned with the con-sumption of different resources). In order to illustrate and evaluate the work, we use an example of a pilot study of an IoT SoS ecosystem designed to support food security at different levels of granularity, namely individuals, groups, cities, and nations.\",\"PeriodicalId\":176958,\"journal\":{\"name\":\"2017 IEEE 25th International Requirements Engineering Conference (RE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 25th International Requirements Engineering Conference (RE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RE.2017.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Requirements Engineering Conference (RE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE.2017.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying Conflicting Requirements in Systems of Systems
A System of Systems (SoS) is an arrangement of useful and independent sub-systems, which are integrated into a larger system. Examples are found in transport systems, nutritional systems, smart homes and smart cities. The composition of component sub-systems into an SoS enables support for complex functionalities that cannot be provided by individual sub-systems on their own. However, to realize the benefits of these functionalities it is necessary to address several software engineering chal-lenges including, but not limited to, the specification, design, construction, deployment, and management of an SoS. The various component sub-systems in an SoS environment are often concerned with distinct domains; are developed by different stake-holders under different circumstances and time; provide distinct functionalities; and are used by different stakeholders, which allow for the existence of conflicting requirements. In this paper, we present a framework to support management of emerging conflicting requirements in an SoS. In particular, we describe an approach to support identification of conflicts between resource-based requirements (i.e. requirements concerned with the con-sumption of different resources). In order to illustrate and evaluate the work, we use an example of a pilot study of an IoT SoS ecosystem designed to support food security at different levels of granularity, namely individuals, groups, cities, and nations.