{"title":"开放世界弱监督时间动作定位的级联证据学习","authors":"Mengyuan Chen, Junyu Gao, Changsheng Xu","doi":"10.1109/CVPR52729.2023.01416","DOIUrl":null,"url":null,"abstract":"Targeting at recognizing and localizing action instances with only video-level labels during training, Weakly-supervised Temporal Action Localization (WTAL) has achieved significant progress in recent years. However, living in the dynamically changing open world where unknown actions constantly spring up, the closed-set assumption of existing WTAL methods is invalid. Compared with traditional open-set recognition tasks, Open-world WTAL (OW-TAL) is challenging since not only are the annotations of unknown samples unavailable, but also the fine-grained annotations of known action instances can only be inferred ambiguously from the video category labels. To address this problem, we propose a Cascade Evidential Learning framework at an evidence level, which targets at OWTAL for the first time. Our method jointly leverages multi-scale temporal contexts and knowledge-guided prototype information to progressively collect cascade and enhanced evidence for known action, unknown action, and background separation. Extensive experiments conducted on THUMOS-14 and ActivityNet-v1.3 verify the effectiveness of our method. Besides the classification metrics adopted by previous open-set recognition methods, we also evaluate our method on localization metrics which are more reasonable for OWTAL.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascade Evidential Learning for Open-world Weakly-supervised Temporal Action Localization\",\"authors\":\"Mengyuan Chen, Junyu Gao, Changsheng Xu\",\"doi\":\"10.1109/CVPR52729.2023.01416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeting at recognizing and localizing action instances with only video-level labels during training, Weakly-supervised Temporal Action Localization (WTAL) has achieved significant progress in recent years. However, living in the dynamically changing open world where unknown actions constantly spring up, the closed-set assumption of existing WTAL methods is invalid. Compared with traditional open-set recognition tasks, Open-world WTAL (OW-TAL) is challenging since not only are the annotations of unknown samples unavailable, but also the fine-grained annotations of known action instances can only be inferred ambiguously from the video category labels. To address this problem, we propose a Cascade Evidential Learning framework at an evidence level, which targets at OWTAL for the first time. Our method jointly leverages multi-scale temporal contexts and knowledge-guided prototype information to progressively collect cascade and enhanced evidence for known action, unknown action, and background separation. Extensive experiments conducted on THUMOS-14 and ActivityNet-v1.3 verify the effectiveness of our method. Besides the classification metrics adopted by previous open-set recognition methods, we also evaluate our method on localization metrics which are more reasonable for OWTAL.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.01416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cascade Evidential Learning for Open-world Weakly-supervised Temporal Action Localization
Targeting at recognizing and localizing action instances with only video-level labels during training, Weakly-supervised Temporal Action Localization (WTAL) has achieved significant progress in recent years. However, living in the dynamically changing open world where unknown actions constantly spring up, the closed-set assumption of existing WTAL methods is invalid. Compared with traditional open-set recognition tasks, Open-world WTAL (OW-TAL) is challenging since not only are the annotations of unknown samples unavailable, but also the fine-grained annotations of known action instances can only be inferred ambiguously from the video category labels. To address this problem, we propose a Cascade Evidential Learning framework at an evidence level, which targets at OWTAL for the first time. Our method jointly leverages multi-scale temporal contexts and knowledge-guided prototype information to progressively collect cascade and enhanced evidence for known action, unknown action, and background separation. Extensive experiments conducted on THUMOS-14 and ActivityNet-v1.3 verify the effectiveness of our method. Besides the classification metrics adopted by previous open-set recognition methods, we also evaluate our method on localization metrics which are more reasonable for OWTAL.