曲线上投影束积上的有效环锥

R. Karmakar
{"title":"曲线上投影束积上的有效环锥","authors":"R. Karmakar","doi":"10.1142/S0129167X21500270","DOIUrl":null,"url":null,"abstract":"Let $X = \\mathbb{P}(E_1) \\times_C \\mathbb{P}(E_2)$ where $C$ is a smooth curve and $E_1$, $E_2$ are vector bundles over $C$.In this paper we compute the pseudo effective cones of higher codimension cycles on $X$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective cones of cycles on products of projective bundles over curves\",\"authors\":\"R. Karmakar\",\"doi\":\"10.1142/S0129167X21500270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X = \\\\mathbb{P}(E_1) \\\\times_C \\\\mathbb{P}(E_2)$ where $C$ is a smooth curve and $E_1$, $E_2$ are vector bundles over $C$.In this paper we compute the pseudo effective cones of higher codimension cycles on $X$.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129167X21500270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129167X21500270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$X = \mathbb{P}(E_1) \times_C \mathbb{P}(E_2)$,其中$C$是光滑曲线,$E_1$, $E_2$是在$C$上的向量束。本文计算了$X$上高余维环的伪有效锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective cones of cycles on products of projective bundles over curves
Let $X = \mathbb{P}(E_1) \times_C \mathbb{P}(E_2)$ where $C$ is a smooth curve and $E_1$, $E_2$ are vector bundles over $C$.In this paper we compute the pseudo effective cones of higher codimension cycles on $X$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信