{"title":"端到端语音与文本翻译的比较研究","authors":"Parnia Bahar, Tobias Bieschke, H. Ney","doi":"10.1109/ASRU46091.2019.9003774","DOIUrl":null,"url":null,"abstract":"Recent advances in deep learning show that end-to-end speech to text translation model is a promising approach to direct the speech translation field. In this work, we provide an overview of different end-to-end architectures, as well as the usage of an auxiliary connectionist temporal classification (CTC) loss for better convergence. We also investigate on pre-training variants such as initializing different components of a model using pretrained models, and their impact on the final performance, which gives boosts up to 4% in Bleu and 5% in Ter. Our experiments are performed on 270h IWSLT TED-talks En→De, and 100h LibriSpeech Audio-books En→Fr. We also show improvements over the current end-to-end state-of-the-art systems on both tasks.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"A Comparative Study on End-to-End Speech to Text Translation\",\"authors\":\"Parnia Bahar, Tobias Bieschke, H. Ney\",\"doi\":\"10.1109/ASRU46091.2019.9003774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in deep learning show that end-to-end speech to text translation model is a promising approach to direct the speech translation field. In this work, we provide an overview of different end-to-end architectures, as well as the usage of an auxiliary connectionist temporal classification (CTC) loss for better convergence. We also investigate on pre-training variants such as initializing different components of a model using pretrained models, and their impact on the final performance, which gives boosts up to 4% in Bleu and 5% in Ter. Our experiments are performed on 270h IWSLT TED-talks En→De, and 100h LibriSpeech Audio-books En→Fr. We also show improvements over the current end-to-end state-of-the-art systems on both tasks.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9003774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparative Study on End-to-End Speech to Text Translation
Recent advances in deep learning show that end-to-end speech to text translation model is a promising approach to direct the speech translation field. In this work, we provide an overview of different end-to-end architectures, as well as the usage of an auxiliary connectionist temporal classification (CTC) loss for better convergence. We also investigate on pre-training variants such as initializing different components of a model using pretrained models, and their impact on the final performance, which gives boosts up to 4% in Bleu and 5% in Ter. Our experiments are performed on 270h IWSLT TED-talks En→De, and 100h LibriSpeech Audio-books En→Fr. We also show improvements over the current end-to-end state-of-the-art systems on both tasks.