利用landsat 8影像热通道估算邦戈地区地表温度

Annisa Firstyandina, Febriandi Febriandi
{"title":"利用landsat 8影像热通道估算邦戈地区地表温度","authors":"Annisa Firstyandina, Febriandi Febriandi","doi":"10.24036/irsaj.v1i2.14","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to determine the land surface temperature in Bungo Regency using the Landsat 8 image thermal channel by carrying out three stages: (1) Mapping the comparison of vegetation density in 2016 and 2021 using the NDVI (Normalized Difference Vegetation Index) method. (2) Mapping land surface temperatures in 2016 and 2021 using the Land Surface Temperature method. (3) Knowing the relationship between LST and NDVI using the Correlation Person test. The results of the study explain the comparison of vegetation density using the Normalized Difference Vegetation Index (NDVI) method in 2016 and 2021 in Bungo Regency. In 2016 the classification is very dense with an area of ​​124,871 Ha, the classification dense with an area of ​​115,732 Ha, the classification medium with an area of ​​98,536 Ha, the classification is rare with an area of ​​71,920 Ha, and very rare classification with an area of ​​54,839 Ha. Whereas in 2021 the very dense classification will decrease to 117,216 Ha, the dense classification will decrease to 112,365 Ha, the moderate classification will decrease to 95,892 Ha, the rare classification will increase to 79,310 Ha, and the very rare classification will increase to 61,084.","PeriodicalId":272417,"journal":{"name":"International Remote Sensing Applied Journal","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESTIMATION OF LAND SURFACE TEMPERATURE IN BUNGO DISTRICT USING THERMAL CHANNELS OF LANDSAT 8 IMAGES\",\"authors\":\"Annisa Firstyandina, Febriandi Febriandi\",\"doi\":\"10.24036/irsaj.v1i2.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to determine the land surface temperature in Bungo Regency using the Landsat 8 image thermal channel by carrying out three stages: (1) Mapping the comparison of vegetation density in 2016 and 2021 using the NDVI (Normalized Difference Vegetation Index) method. (2) Mapping land surface temperatures in 2016 and 2021 using the Land Surface Temperature method. (3) Knowing the relationship between LST and NDVI using the Correlation Person test. The results of the study explain the comparison of vegetation density using the Normalized Difference Vegetation Index (NDVI) method in 2016 and 2021 in Bungo Regency. In 2016 the classification is very dense with an area of ​​124,871 Ha, the classification dense with an area of ​​115,732 Ha, the classification medium with an area of ​​98,536 Ha, the classification is rare with an area of ​​71,920 Ha, and very rare classification with an area of ​​54,839 Ha. Whereas in 2021 the very dense classification will decrease to 117,216 Ha, the dense classification will decrease to 112,365 Ha, the moderate classification will decrease to 95,892 Ha, the rare classification will increase to 79,310 Ha, and the very rare classification will increase to 61,084.\",\"PeriodicalId\":272417,\"journal\":{\"name\":\"International Remote Sensing Applied Journal\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Remote Sensing Applied Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24036/irsaj.v1i2.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Remote Sensing Applied Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24036/irsaj.v1i2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用Landsat 8图像热通道,通过三个阶段确定本戈县地表温度:(1)采用归一化植被指数(NDVI)方法绘制2016年和2021年植被密度的对比图。(2)利用地表温度法对2016年和2021年的地表温度进行制图。(3)利用Correlation Person检验了解LST与NDVI之间的关系。利用归一化植被指数(NDVI)方法对2016年和2021年邦戈县植被密度进行了比较。2016年分级非常密集,面积为124871 Ha,分级密集,面积为115732 Ha,分级中等,面积为98536 Ha,分级罕见,面积为71920 Ha,分级非常罕见,面积为54839 Ha。而到2021年,非常密集的分类将减少到117,216 Ha,密集分类将减少到112,365 Ha,中等分类将减少到95,892 Ha,罕见分类将增加到79,310 Ha,非常罕见分类将增加到61,084 Ha。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESTIMATION OF LAND SURFACE TEMPERATURE IN BUNGO DISTRICT USING THERMAL CHANNELS OF LANDSAT 8 IMAGES
The purpose of this study was to determine the land surface temperature in Bungo Regency using the Landsat 8 image thermal channel by carrying out three stages: (1) Mapping the comparison of vegetation density in 2016 and 2021 using the NDVI (Normalized Difference Vegetation Index) method. (2) Mapping land surface temperatures in 2016 and 2021 using the Land Surface Temperature method. (3) Knowing the relationship between LST and NDVI using the Correlation Person test. The results of the study explain the comparison of vegetation density using the Normalized Difference Vegetation Index (NDVI) method in 2016 and 2021 in Bungo Regency. In 2016 the classification is very dense with an area of ​​124,871 Ha, the classification dense with an area of ​​115,732 Ha, the classification medium with an area of ​​98,536 Ha, the classification is rare with an area of ​​71,920 Ha, and very rare classification with an area of ​​54,839 Ha. Whereas in 2021 the very dense classification will decrease to 117,216 Ha, the dense classification will decrease to 112,365 Ha, the moderate classification will decrease to 95,892 Ha, the rare classification will increase to 79,310 Ha, and the very rare classification will increase to 61,084.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信