通过社交媒体主动检测内部威胁:YouTube案例

Miltiadis Kandias, V. Stavrou, Nick Bozovic, D. Gritzalis
{"title":"通过社交媒体主动检测内部威胁:YouTube案例","authors":"Miltiadis Kandias, V. Stavrou, Nick Bozovic, D. Gritzalis","doi":"10.1145/2517840.2517865","DOIUrl":null,"url":null,"abstract":"Insider threat is a major issue in cyber and corporate security. In this paper we study the psychosocial perspective of the insider via social media, Open Source Intelligence, and user generated content classification. Inductively, we propose a prediction method by evaluating the predisposition towards law enforcement and authorities, a personal psychosocial trait closely connected to the manifestation of malevolent insiders. We propose a methodology to detect users holding a negative attitude towards authorities. For doing so we facilitate the use of machine learning techniques and of a dictionary-based approach, so as to detect comments expressing negative attitude. Thus, we can draw conclusions over a user behavior and beliefs via the content the user generated within the limits a social medium. We also use an assumption free flat data representation technique in order to decide over the user's attitude. Furthermore, we compare the results of each method and highlight the common behavior manifested by the users. The demonstration is applied on a crawled community of users on YouTube.","PeriodicalId":406846,"journal":{"name":"Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Proactive insider threat detection through social media: the YouTube case\",\"authors\":\"Miltiadis Kandias, V. Stavrou, Nick Bozovic, D. Gritzalis\",\"doi\":\"10.1145/2517840.2517865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insider threat is a major issue in cyber and corporate security. In this paper we study the psychosocial perspective of the insider via social media, Open Source Intelligence, and user generated content classification. Inductively, we propose a prediction method by evaluating the predisposition towards law enforcement and authorities, a personal psychosocial trait closely connected to the manifestation of malevolent insiders. We propose a methodology to detect users holding a negative attitude towards authorities. For doing so we facilitate the use of machine learning techniques and of a dictionary-based approach, so as to detect comments expressing negative attitude. Thus, we can draw conclusions over a user behavior and beliefs via the content the user generated within the limits a social medium. We also use an assumption free flat data representation technique in order to decide over the user's attitude. Furthermore, we compare the results of each method and highlight the common behavior manifested by the users. The demonstration is applied on a crawled community of users on YouTube.\",\"PeriodicalId\":406846,\"journal\":{\"name\":\"Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2517840.2517865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2517840.2517865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

内部威胁是网络和企业安全中的一个主要问题。在本文中,我们通过社交媒体、开源情报和用户生成内容分类来研究内部人员的心理社会视角。在归纳上,我们提出了一种预测方法,通过评估对执法和当局的倾向,这是一种与恶意内部人士的表现密切相关的个人心理社会特征。我们提出了一种方法来检测用户持有对权威的负面态度。为此,我们促进了机器学习技术和基于词典的方法的使用,以便检测表达负面态度的评论。因此,我们可以通过用户在社交媒体范围内生成的内容来得出用户行为和信念的结论。为了确定用户的态度,我们还使用了一种无假设的平面数据表示技术。此外,我们比较了每种方法的结果,并突出了用户表现出的共同行为。该演示应用于YouTube上的一个抓取的用户社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proactive insider threat detection through social media: the YouTube case
Insider threat is a major issue in cyber and corporate security. In this paper we study the psychosocial perspective of the insider via social media, Open Source Intelligence, and user generated content classification. Inductively, we propose a prediction method by evaluating the predisposition towards law enforcement and authorities, a personal psychosocial trait closely connected to the manifestation of malevolent insiders. We propose a methodology to detect users holding a negative attitude towards authorities. For doing so we facilitate the use of machine learning techniques and of a dictionary-based approach, so as to detect comments expressing negative attitude. Thus, we can draw conclusions over a user behavior and beliefs via the content the user generated within the limits a social medium. We also use an assumption free flat data representation technique in order to decide over the user's attitude. Furthermore, we compare the results of each method and highlight the common behavior manifested by the users. The demonstration is applied on a crawled community of users on YouTube.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信