检测香蕉的类型和成熟使用极端的学习机器

Ina Najiyah, Ifani Hariyanti
{"title":"检测香蕉的类型和成熟使用极端的学习机器","authors":"Ina Najiyah, Ifani Hariyanti","doi":"10.51977/jti.v2i2.315","DOIUrl":null,"url":null,"abstract":"Kebun Pisang Celak, yang berada di desa Celak Kec. Cililin adalah salah satu tempat yang khusus bercocok tanam buah pisang. Pisang pada Kebun Pisang Celak ini beraneka ragam jenis. Permasalahan yang ditemukan adalah kurang tepatnya dan kurang pengetahuannya karyawan dalam membedakan jenis dan kematangan pisang terutama karyawan baru. Penelitian ini membuat aplikasi deteksi jenis pisang dan kematangan pisang menggunakan metode Extreme learning machine. Dataset pada penelitian ini merupakan gambar pisang dengan 9 jenis yaitu pisang ambon, pisang raja, pisang cavendish, pisang kirana, pisang barangan, pisang Nangka, pisang mas dan pisang kapok. Kematangan pisang pada penelitian ini yaitu tingkat mentah, matang dan terlalu matang. Program dibuat menggunakan tensorflow python. CNN diuji dan menghasilkan tingkat akurasi sebesar 89%. Hasil dari penelitian ini yaitu aplikasi berbasis android untuk mendeteksi jenis pisang.","PeriodicalId":348225,"journal":{"name":"Jurnal Responsif : Riset Sains dan Informatika","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DETEKSI JENIS DAN KEMATANGAN PISANG MENGGUNAKAN METODE EXTREME LEARNING MACHINE\",\"authors\":\"Ina Najiyah, Ifani Hariyanti\",\"doi\":\"10.51977/jti.v2i2.315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kebun Pisang Celak, yang berada di desa Celak Kec. Cililin adalah salah satu tempat yang khusus bercocok tanam buah pisang. Pisang pada Kebun Pisang Celak ini beraneka ragam jenis. Permasalahan yang ditemukan adalah kurang tepatnya dan kurang pengetahuannya karyawan dalam membedakan jenis dan kematangan pisang terutama karyawan baru. Penelitian ini membuat aplikasi deteksi jenis pisang dan kematangan pisang menggunakan metode Extreme learning machine. Dataset pada penelitian ini merupakan gambar pisang dengan 9 jenis yaitu pisang ambon, pisang raja, pisang cavendish, pisang kirana, pisang barangan, pisang Nangka, pisang mas dan pisang kapok. Kematangan pisang pada penelitian ini yaitu tingkat mentah, matang dan terlalu matang. Program dibuat menggunakan tensorflow python. CNN diuji dan menghasilkan tingkat akurasi sebesar 89%. Hasil dari penelitian ini yaitu aplikasi berbasis android untuk mendeteksi jenis pisang.\",\"PeriodicalId\":348225,\"journal\":{\"name\":\"Jurnal Responsif : Riset Sains dan Informatika\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Responsif : Riset Sains dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51977/jti.v2i2.315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Responsif : Riset Sains dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51977/jti.v2i2.315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

科尔香蕉花园,在科尔克村。cicandleum是种植香蕉水果的特别地点之一。雪松林的香蕉种类繁多。被发现的问题是,员工在辨别香蕉种类和成熟方面所缺乏的知识,尤其是新员工。这项研究使用极端学习机器来检测香蕉类型和香蕉成熟的应用。研究的结果显示,香蕉有9种香蕉,安汶香蕉,芭蕉,卡文迪许香蕉,香蕉香蕉,芭蕉,菠萝病,香蕉和芭蕉。在这项研究中,香蕉的成熟程度是生的、熟透的和过熟的。该程序是用python天梭流编写的。CNN进行了测试,得到了89%的准确率。这项研究的结果是android检测香蕉类型的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETEKSI JENIS DAN KEMATANGAN PISANG MENGGUNAKAN METODE EXTREME LEARNING MACHINE
Kebun Pisang Celak, yang berada di desa Celak Kec. Cililin adalah salah satu tempat yang khusus bercocok tanam buah pisang. Pisang pada Kebun Pisang Celak ini beraneka ragam jenis. Permasalahan yang ditemukan adalah kurang tepatnya dan kurang pengetahuannya karyawan dalam membedakan jenis dan kematangan pisang terutama karyawan baru. Penelitian ini membuat aplikasi deteksi jenis pisang dan kematangan pisang menggunakan metode Extreme learning machine. Dataset pada penelitian ini merupakan gambar pisang dengan 9 jenis yaitu pisang ambon, pisang raja, pisang cavendish, pisang kirana, pisang barangan, pisang Nangka, pisang mas dan pisang kapok. Kematangan pisang pada penelitian ini yaitu tingkat mentah, matang dan terlalu matang. Program dibuat menggunakan tensorflow python. CNN diuji dan menghasilkan tingkat akurasi sebesar 89%. Hasil dari penelitian ini yaitu aplikasi berbasis android untuk mendeteksi jenis pisang.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信