作为随机森林的宏观经济

Philippe Goulet Coulombe
{"title":"作为随机森林的宏观经济","authors":"Philippe Goulet Coulombe","doi":"10.2139/ssrn.3633110","DOIUrl":null,"url":null,"abstract":"I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many popular nonlinearities (threshold/switching, smooth transition, structural breaks/change) and allowing for sophisticated new ones. The approach delivers clear forecasting gains over numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well for inflation. Unlike most ML-based methods, MRF is directly interpretable — via its GTVPs. For instance, the successful unemployment forecast is due to the influence of forward-looking variables (e.g., term spreads, housing starts) nearly doubling before every recession. Interestingly, the Phillips curve has indeed flattened, and its might is highly cyclical.","PeriodicalId":443911,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The Macroeconomy as a Random Forest\",\"authors\":\"Philippe Goulet Coulombe\",\"doi\":\"10.2139/ssrn.3633110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many popular nonlinearities (threshold/switching, smooth transition, structural breaks/change) and allowing for sophisticated new ones. The approach delivers clear forecasting gains over numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well for inflation. Unlike most ML-based methods, MRF is directly interpretable — via its GTVPs. For instance, the successful unemployment forecast is due to the influence of forward-looking variables (e.g., term spreads, housing starts) nearly doubling before every recession. Interestingly, the Phillips curve has indeed flattened, and its might is highly cyclical.\",\"PeriodicalId\":443911,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3633110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3633110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我开发了宏观经济随机森林(MRF),这是一种采用规范机器学习(ML)工具的算法,可以灵活地为线性宏观方程中的演化参数建模。它的主要输出,广义时变参数(GTVPs),是一个通用的设备嵌套许多流行的非线性(阈值/开关,平滑过渡,结构中断/变化),并允许复杂的新。这种方法在预测上比其他方法有明显的优势,它预测了2008年失业率的急剧上升,对通货膨胀的预测也很好。与大多数基于ml的方法不同,MRF可以通过其gtpv直接解释。例如,成功的失业预测是由于前瞻性变量的影响(例如,期限价差,房屋开工)在每次衰退之前几乎翻倍。有趣的是,菲利普斯曲线确实已经趋平,而且它的力量具有高度周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Macroeconomy as a Random Forest
I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many popular nonlinearities (threshold/switching, smooth transition, structural breaks/change) and allowing for sophisticated new ones. The approach delivers clear forecasting gains over numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well for inflation. Unlike most ML-based methods, MRF is directly interpretable — via its GTVPs. For instance, the successful unemployment forecast is due to the influence of forward-looking variables (e.g., term spreads, housing starts) nearly doubling before every recession. Interestingly, the Phillips curve has indeed flattened, and its might is highly cyclical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信